Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T17:05:59.725Z Has data issue: false hasContentIssue false

Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability

Published online by Cambridge University Press:  31 January 2011

Baojia Li
Affiliation:
Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu, China 212013
Ming Zhou*
Affiliation:
Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu, China 212013
Run Yuan
Affiliation:
Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu, China 212013
Lan Cai
Affiliation:
Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu, China 212013
*
a)Address all correspondence to this author. e-mail: [email protected] or [email protected]
Get access

Abstract

Based on the classical wetting theories, two theoretically predicted formulas of the apparent contact angles on square-pillar-array microstructured surfaces for Wenzel mode and Cassie mode have been derived, respectively. The theories of superhydrophobic stability on microstructured surfaces have been summarized. Four square-pillar-array samples were fabricated on titanium substrates by using the femtosecond laser micromachining technology, and wettability was analyzed by both experimental and analytical methods. The results showed that the titanium-based surfaces are superhydrophobic. The maximal apparent contact angle is up to 156.9°, while the corresponding sliding angle is 4.7°. Testing of the superhydrophobic stability of the surfaces showed that the maximal deviation of the apparent contact angles is only 0.6°. Analyses indicate that the stable superhydrophobicity of the supplied titanium-based surfaces is within a certain range and not perfect. To improve that, a practical controllable method is proposed herein for the design of a stable superhydrophobic surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K.Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13), 5754 2000CrossRefGoogle Scholar
2Guo, Z-G.Liu, W-M.: Progress in biomimicing of super-hydrophobic surface. Prog. Chem. 18(6), 721 2006 (in Chinese)Google Scholar
3Gu, G-T.Dang, H-X.: Development of super-hydrophobic transparent thin films. J. Henan Univ. (Nat. Sci.) 34(4), 22 2004 (in Chinese)Google Scholar
4Nakajima, A., Hashimoto, K.Watanabe, T.: Recent studies on super-hydrophobic film. Monatsh. Chem. 132, 31 2001CrossRefGoogle Scholar
5Shibuichi, S., Yamamoto, T., Onda, T.Tsujii, K.: Super water- and oil-repellent surfaces resulting from fractal structure. J. Colloid Interface Sci. 208(1), 287 1998CrossRefGoogle Scholar
6Cui, G-L., Xu, W., Zhou, X-H., Xiao, X-W., Jiang, L.Zhu, D-B.: Rose-like superhydrophobic surface based on conducting dmit salt. Colloids Surf., A 272(1–2), 63 2006CrossRefGoogle Scholar
7Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y.Pogreb, R.: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982 2006CrossRefGoogle ScholarPubMed
8Abdelsalam, M.E., Bartlett, P.N., Kelf, T.Baumberg, J.: Wetting of regularly structured gold surfaces. Langmuir 21, 1753 2005CrossRefGoogle ScholarPubMed
9Wang, C-H., Song, Y-Y., Zhao, J-W.Xia, X-H.: Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surf. Sci. 600(4), L38 2006CrossRefGoogle Scholar
10Bormashenko, E., Bormashenko, Y., Whyman, G., Pogreb, R.Stanevsky, O.: Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie–Baxter wetting hypothesis. J. Colloid Interface Sci. 302, 308 2006CrossRefGoogle ScholarPubMed
11Zhao, N., Shi, F., Wang, Z-Q.Zhang, X.: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 21, 4713 2005CrossRefGoogle ScholarPubMed
12Wang, S-T., Feng, L.Jiang, L.: One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater. 18(6), 767 2006CrossRefGoogle Scholar
13Chen, Z.Geng, X-G.: Micro/nano-structure and mechanism of anti-sticky thin film on copper substrate. Mater. Protect. 38(7), 1 2005 (in Chinese)Google Scholar
14Shirtcliffe, N.J., McHale, G., Newton, M.I.Perry, C.C.: Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21, 937 2005CrossRefGoogle ScholarPubMed
15Han, J.T., Jang, Y., Lee, D.Y., Park, J.H., Song, S-H., Ban, D-Y.Cho, K.: Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J. Mater. Chem. 15, 3089 2005CrossRefGoogle Scholar
16Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P.Yu, S.F.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 109, 7746 2005CrossRefGoogle ScholarPubMed
17Kitazawa, S., Choi, Y.Yamamoto, S.: In situ optical spectroscopy of PLD of nano-structured TiO2. Vacuum 74, 637 2004CrossRefGoogle Scholar
18György, E., Pino, A. Pérez del, Serra, P.Morenza, J.L.: Influence of the ambient gas in laser structuring of the titanium surface. Surf. Coat. Technol. 187, 245 2004CrossRefGoogle Scholar
19György, E., Pino, A. Pérez del, Serra, P.Morenza, J.L.: Growth of surface structures on through pulsed Nd:YAG laser irradiation in vacuum. Appl. Surf. Sci. 197–198, 851 2002CrossRefGoogle Scholar
20Koshizaki, N., Narazaki, A.Sasaki, T.: Preparation of nanocrystalline titania films by pulsed laser deposition at room temperature. Appl. Surf. Sci. 197-198, 624 2002CrossRefGoogle Scholar
21Tian, Y-S., Chen, C-Z., Wang, D-Y.Lei, T-Q.: Research progress of laser surface treatment on titanium alloys. Metal Heat Treat. 30(8), 29 2005 (in Chinese)Google Scholar
22Henč-Bartolić, V., Andreić, Z., Gracin, D., Kunze, H.J.Stubičar, M.: Nitrogen laser beam interaction with titanium surface. Fiziki, A 4(2), 449 1995Google Scholar
23Lima, M.S.F., Folio, F.Mischler, S.: Microstructure and surface properties of laser-remelted titanium nitride coatings on titanium. Surf. Coat. Technol. 199, 83 2005CrossRefGoogle Scholar
24Tsukamotoa, M., Asukab, K., Nakano, H., Hashida, M., Katto, M., Abe, N.Fujita, M.: Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80, 1346 2006CrossRefGoogle Scholar
25Vorobyev, A.Y.Guo, C-L.: Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253, 7272 2007CrossRefGoogle Scholar
26Sun, R-D., Nakajima, A., Fujishima, A., Watanabe, T.Hashimoto, K.: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984 2001CrossRefGoogle Scholar
27Liu, Q-J., Wu, X-H., Liu, Q.He, Y-H.: Study on photocatalytic and hydrophilic properties of TiO2/Fe2O3 composite thin film. J. Funct. Mater. 34(2), 225 2003 (in Chinese)Google Scholar
28Liu, Q-J., Wu, X-H.Liu, Q.: Effect of heat-treated temperature on photocatalytic and hydrophilic properties of TiO2 thin film. J. Funct. Mater. 34(2), 189 2003 (in Chinese)Google Scholar
29Yang, Y-C., Guan, Z-S., Feng, W-H., Ye, Z-Y., Si, Z-X., Song, T-L.Jiang, L.: Study on wettability of sol-gel TiO2 film ablated by laser. Acta Chim. Sinica 60(10), 1773 2002 (in Chinese)Google Scholar
30Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988 1936CrossRefGoogle Scholar
31Wenzel, R.N.: Surface roughness and contact angle (letter). J. Phys. Colloid Chem. 53, 1466 1949CrossRefGoogle Scholar
32Cassie, A.B.D.Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 1944CrossRefGoogle Scholar
33Cassie, A.B.D.: Contact angles. Discuss. Faraday Soc. 3, 11 1948CrossRefGoogle Scholar
34de Gennes, P.G., Brochard-Wyart, F.Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Springer New York 2004 219–221CrossRefGoogle Scholar
35Patankar, N.A.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249 2003CrossRefGoogle Scholar
36He, B., Patankar, N.A.Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999 2003CrossRefGoogle Scholar
37Zheng, L-J., Wu, X-D., Lou, Z.Wu, D.: Superhydrophobic surfaces fabricated by microstructuring on surfaces. Chin. Sci. Bull. 49(17), 1691 2004 (in Chinese)Google Scholar
38Zhu, L., Feng, Y-Y., Ye, X-Y.Zhou, Z-Y.: Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sens. Actuators, A 130–131, 595 2006CrossRefGoogle Scholar
39Marmur, A.: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 19, 8343 2003CrossRefGoogle Scholar
40Li, W.Amirfazli, A.: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J. Colloid Surf. Sci. 292, 195 2005CrossRefGoogle ScholarPubMed
41Lafuma, A.Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457 2003CrossRefGoogle ScholarPubMed
42Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097 2004CrossRefGoogle ScholarPubMed
43Liu, B.Lange, F.F.: Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size. J. Colloid Interface Sci. 298, 899 2006CrossRefGoogle ScholarPubMed
44Zheng, Q-S., Yu, Y.Zhao, Z-H.: Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21, 12207 2005CrossRefGoogle ScholarPubMed
45Bhushan, B., Nosonovsky, M.Jung, Y.C.: Towards optimization of patterned superhydrophobic surfaces. J. R. Soc. Interface 4, 643 2007CrossRefGoogle ScholarPubMed
46Nosonovsky, M.Bhushan, B.: Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 84, 382 2007Google Scholar
47Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157 2007CrossRefGoogle ScholarPubMed
48Bormashenko, E., Pogreb, R., Whyman, G.Erlich, M.: Cassie– Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie–Wenzel wetting transition a 2D or 1D affair? Langmuir 23, 6501 2007CrossRefGoogle ScholarPubMed
49Bormashenko, E., Pogreb, R., Whyman, G.Erlich, M.: Resonance Cassie–Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23, 12217 2007CrossRefGoogle ScholarPubMed