Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:11:50.947Z Has data issue: false hasContentIssue false

Fabrication of 3D wax/silica/Ag(Au) colloidosomes as surface-enhanced Raman spectroscopy substrates based on Pickering emulsion and seed-mediated growth method of noble metal nanoparticles

Published online by Cambridge University Press:  29 April 2019

Ke Wang*
Affiliation:
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
Lihua Feng
Affiliation:
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
Xiyong Li
Affiliation:
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
Wenqin Wang*
Affiliation:
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Noble metal (Ag, Au) nanoparticles (NPs) deposited on the surface of three-dimensional (3D) materials are promising 3D surface-enhanced Raman spectroscopy (SERS) substrates. In this work, the authors reported the preparation of 3D wax/silica/Ag(Au) colloidosomes by sulfonic acid group–terminated silica spheres (SiO2–SO3H) combined with a Pickering emulsion technique, as well as seed-mediated growth method of noble metal NPs. The presence of –SO3H group on the silica spheres not only improves significantly the quality of wax/silica colloidosomes (forming perfect silica shell around wax droplet) but also can adsorb metal precursor ions via electrostatic attraction for further growth of metal NPs. The size and coverage of Ag(Au) NPs on wax/silica droplets can be facilely tuned, and relevant wax/silica/Ag(Au) colloidosomes and silica/Ag(Au) Janus particles are obtained via this strategy. The obtained wax/silica/Ag colloidosomes as 3D SERS substrates exhibited excellent SERS enhancement ability and detection limit of 4-aminothiophenol reached 10−9 M.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., and Feld, M.S.: Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957 (1999).10.1021/cr980133rCrossRefGoogle ScholarPubMed
Pieczonka, N.P.W. and Aroca, R.F.: Single molecule analysis by surfaced-enhanced Raman scattering. Chem. Soc. Rev. 37, 946 (2008).CrossRefGoogle ScholarPubMed
Sharma, B., Frontiera, R.R., Henry, A.I., Ringe, E., and Duyne, R.P.V.: SERS: Materials, applications, and the future. Mater. Today 15, 16 (2012).CrossRefGoogle Scholar
Chattopadhyay, S., Lo, H-C., Hsu, C-H., Chen, L-C., and Chen, K-H.: Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips. Chem. Mater. 17, 553 (2005).10.1021/cm049269yCrossRefGoogle Scholar
Lu, G.W., Li, C., and Shi, G.Q.: Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering. Chem. Mater. 19, 3433 (2007).10.1021/cm0706393CrossRefGoogle Scholar
Lu, X.F., Huang, Y.Y., Liu, B.Q., Zhang, L., Song, L.P., Zhang, J.W., Zhang, A.F., and Chen, T.: Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 30, 1989 (2018).10.1021/acs.chemmater.7b05176CrossRefGoogle Scholar
Fang, J.X., Du, S., Lebedkin, S., Li, Z.Y., Kruk, R., Kappes, M., and Hahn, H.: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 10, 5006 (2010).10.1021/nl103161qCrossRefGoogle ScholarPubMed
Wang, H. and Halas, N.J.: Mesoscopic Au “meatball” particles. Adv. Mater. 20, 820 (2008).10.1002/adma.200701293CrossRefGoogle Scholar
Liang, H.Y., Li, Z.P., Wang, W.Z., Wu, Y.S., and Xu, H.X.: Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv. Mater. 20, 4614 (2009).10.1002/adma.200901139CrossRefGoogle Scholar
Song, C.Y., Zhou, N., Yang, B.Y., Yang, Y.J., and Wang, L.H.: Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering. Nanoscale 7, 17004 (2015).CrossRefGoogle ScholarPubMed
Nhung, T.T. and Lee, S-W.: Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates. ACS Appl. Mater. Interfaces 6, 21335 (2014).10.1021/am506297nCrossRefGoogle ScholarPubMed
Leem, J., Wang, M.C., Kang, P., and Nam, S.W.: Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684 (2015).CrossRefGoogle ScholarPubMed
Lu, L.H., Randjelovic, I., Capek, R., Gaponik, N., Yang, J.H., Zhang, H.J., and Eychmüller, A.: Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhance Raman spectroscopy. Chem. Mater. 17, 5731 (2005).CrossRefGoogle Scholar
Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., and Weitz, D.A.: Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006 (2002).CrossRefGoogle ScholarPubMed
Zhang, Q., Lee, Y.H., Phang, I.Y., Lee, C.K., and Ling, X.Y.: Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 10, 2703 (2014).CrossRefGoogle ScholarPubMed
Chuong, G., Quang, P., Lee, H.K., Phang, I.Y., and Ling, X.Y.: Plasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensing. Angew. Chem., Int. Ed. 54, 9691 (2015).Google Scholar
Hong, L., Jiang, S., and Granick, S.: Simple method to produce Janus colloidal particles in large quantity. Langmuir 22, 9495 (2006).CrossRefGoogle ScholarPubMed
Jiang, S., Schultz, M.J., Chen, Q., Moore, J.S., and Granick, S.: Solvent-free synthesis of Janus colloidal particles. Langmuir 24, 10073 (2008).10.1021/la800895gCrossRefGoogle ScholarPubMed
Shylesh, S., Sharma, S., Mirajkar, S.P., and Singh, A.P.: Silica functionalised sulphonic acid groups: Synthesis, characterization and catalytic activity in acetalization and acetylation reactions. J. Mol. Catal. A: Chem. 212, 219 (2004).10.1016/j.molcata.2003.10.043CrossRefGoogle Scholar
Lebdioua, K., Aimable, A., Cerbelaud, M., Videcoq, A., and Peyratout, C.: Influence of different surfactants on Pickering emulsions stabilized by submicronic silica particles. J. Colloid Interface Sci. 520, 127 (2018).CrossRefGoogle ScholarPubMed
Deng, Z., Chen, M., and Wu, L.: Novel method to fabricate SiO2/Ag composites spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 111, 11692 (2007).10.1021/jp073632hCrossRefGoogle Scholar
Zhang, J.H., Liu, J.B., Wang, S.Z., Zhan, P., Wang, Z.L., and Ming, N.B.: Facile methods to coat polystyrene and silica colloids with metal. Adv. Funct. Mater. 14, 1089 (2004).10.1002/adfm.200400119CrossRefGoogle Scholar
Liu, F., Goyal, S., Forrester, M., Ma, T., Miller, K., Mansoorieh, Y., Henjum, J., Zhou, L., Cochran, E., and Jiang, S.: Self-assembly of Janus dumbbell nanocrystals and their enhanced surface plasmon resonance. Nano Lett. 19, 15871594 (2019).10.1021/acs.nanolett.8b04464CrossRefGoogle ScholarPubMed
Sun, Y.J., Wang, L., Sun, L.L., Guo, C.L., Yang, T., Liu, Z.L., Xu, F., and Li, Z.: Fabrication, characterization, and application in surface-enhanced Raman spectrum of assembled type-I collagen-silver nanoparticle multilayered films. J. Chem. Phys. 128, 074704 (2008).CrossRefGoogle ScholarPubMed
Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).10.1103/PhysRevLett.78.1667CrossRefGoogle Scholar
Liu, X.J., Cao, L.Y., Song, W., Ai, K.L., and Lu, L.H.: Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 3, 2944 (2011).CrossRefGoogle ScholarPubMed
Wang, Y.L., Guo, S.J., Chen, H.J., and Wang, E.K.: Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. J. Colloid Interface Sci. 318, 82 (2008).CrossRefGoogle ScholarPubMed
Hu, X.G., Wang, T., Wang, L., and Dong, S.J.: Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticles shape dependence: Off-surface plasmon resonance condition. J. Phys. Chem. C 111, 6962 (2007).CrossRefGoogle Scholar
Ren, G.H., Wang, W.Q., Shang, M.Y., Zou, H.Z., and Cheng, S.W.: Using a macroporous silver shell to coat sulfonic acid group functionalized silica spheres and their applications in catalysis and surface-enhanced Raman scattering. Langmuir 31, 10517 (2015).10.1021/acs.langmuir.5b02218CrossRefGoogle ScholarPubMed
Shi, W.L., Sahoo, Y., Swihart, M.T., and Prasad, P.N.: Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610 (2005).10.1021/la047628yCrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material 1

Download Wang et al. supplementary material(File)
File 1.3 MB