Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T04:27:49.006Z Has data issue: false hasContentIssue false

Fabrication and characterization of mesoporous borosilicate glasses with different boron contents

Published online by Cambridge University Press:  31 January 2011

Tongping Xiu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050 People’s Republic of China; and Graduate School of the Chinese Academy of Sciences, Beijing, 100039 People’s Republic of China
Qian Liu*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050 People’s Republic of China
Jiacheng Wang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050 People’s Republic of China; and Graduate School of the Chinese Academy of Sciences, Beijing, 100039 People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A series of wormhole-like mesoporous borosilicate glasses (MBSGs) with different compositions has been prepared by a combination of surfactant templating, sol-gel methods, and evaporation-induced self-assembly processes. Small-angle x-ray diffraction, high-resolution transmission electron microscopy, and N2 sorption isotherms analysis showed that all the MBSGs prepared possess the mesoporous structure. However, the stability of the mesoporous structure is strongly affected by the boron contents. When boron content was increased, boric acid was found in the final product, and the mesoporous structure was partially degraded. The formation and loss of boric acid through the whole process may account for the partial collapse of the mesostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takahashi, T., Iwaishi, S., Yanagimoto, Y. Kai, T.: Hydrogenation of 1-hexenes and 1-octenes over nickel catalyst supported on porous glass prepared from borosilicate glass. Korean J. Chem. Eng. 14, 459 1997CrossRefGoogle Scholar
2Hermann, M. Gottaschalk, U.: Large-scale immobilization of antibodies on porous glass carriers. Bioforum 3, 172 2000Google Scholar
3Werner, J., Otto, K., Enke, D., Pelzl, G. Janowski, F.: Dielectric investigations of the N-SmB transition in a porous glass. Liq. Cryst. 27, 1295 2000CrossRefGoogle Scholar
4Xavier, M.P., Vallejo, B., Marazuela, M.D., Moreno-Bondi, M.C., Baldini, F. Falai, A.: Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red. Biosens. Bioelectron. 14, 895 2000CrossRefGoogle ScholarPubMed
5Kuraoka, K., Chujo, Y. Yazawa, T.: Hydrocarbon separation via porous glass membranes surface-modified using organosilane compounds. J. Membr. Sci. 182, 139 2001CrossRefGoogle Scholar
6Kuraoka, K., Tanaka, H. Yazawa, T.: Highly selective separation of CO2 and He by xerogel coated porous glass membrane. J. Mater. Sci. Lett. 15, 1 1996CrossRefGoogle Scholar
7Plodinec, M.J.: Borosilicate glasses for nuclear waste imobilisation. Glass Technol. 41, 186 2000Google Scholar
8Ilyas, M. Hogarth, C.A.: Optical absorption edge of amorphous thin films of borosilicate glass. J. Mater. Sci. Lett. 2, 535 1983CrossRefGoogle Scholar
9Wemple, S.H., Pinnow, D.A., Rich, T.C., Jaeger, R.E. Van Uitert, L.G.: Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations. J. Appl. Phys. 44, 5432 1973CrossRefGoogle Scholar
10Bagratishvili, G.D., Dzhanelidze, R.B., Jishiashvili, D.A., Piskanovskii, L.V. Shiolashvili, Z.N.: Boron diffusion from a reactively sputtered glass source in Si and SiO2. Phy. Status Solidi A 56, 27 1979CrossRefGoogle Scholar
11Sanchez, G., Castano, J.L., Garrido, J., Martinez, J. Piqueras, J.: Direct writing laser doping from spun-on glasses. J. Electrochem. Soc. 138, 3039 1991CrossRefGoogle Scholar
12Enke, D., Janowski, F. Schwieger, W.: Porous glasses in the 21st century—A short review. Microporous Mesoporous Mater. 60, 19 2003CrossRefGoogle Scholar
13Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature. 359, 710 1992CrossRefGoogle Scholar
14Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 1992CrossRefGoogle Scholar
15Bagshaw, S.A., Prouzet, E. Pinnavaia, T.J.: Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269, 1242 1995CrossRefGoogle ScholarPubMed
16Bagshaw, S.A. Pinnavaia, T.J.: Mesoporous alumina molecular sieves. Angew. Chem. Int. Ed. Engl. 35, 1102 1996CrossRefGoogle Scholar
17Xiu, T.P., Liu, Q. Wang, J.C.: Alkali-free borosilicate glasses with worm-hole like mesopores. J. Mater. Chem. 16, 4022 2006CrossRefGoogle Scholar
18Zhang, W.Z., Pauly, T.R. Pinnavaia, T.J.: Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S0I0) assembly pathway. Chem. Mater. 9, 2491 1997CrossRefGoogle Scholar
19Pauly, T.R., Liu, Y., Pinnavaia, T.J., Billinge, S.J.L. Rieker, T.P.: Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures. J. Am. Chem. Soc. 121, 8835 1999CrossRefGoogle Scholar
20Tanev, P.T., Chibwe, M. Pinnavaia, T.J.: Titanium containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321 1994CrossRefGoogle ScholarPubMed
21Zhai, S.R., Wei, W., Wu, D. Sun, Y.H.: Characterization and catalytic activities of mesoporous AlMSU-X with wormhole-like framework structure. Catal. Lett. 89, 261 2003CrossRefGoogle Scholar
22Brinker, C.J., Lu, Y.F., Sellinger, A. Fan, H.Y.: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 19993.0.CO;2-R>CrossRefGoogle Scholar
23Emmett, P.H. Cines, M.: Adsorption of argon, nitrogen, and butane on porous glass. J. Phys. Colloid Chem. 51, 1248 1947CrossRefGoogle ScholarPubMed
24Wang, J.C. Liu, Q.: Nitrogen loss and structural change of nitrogen-incorporated SBA-15 mesoporous materials under different treatment conditions. J. Mater. Res. 20, 2296 2005CrossRefGoogle Scholar
25Tenney, A.S. Wong, J.: Vibrational-spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516 1972CrossRefGoogle Scholar
26Parsons, J.L. Milberg, M.E.: Vibrational spectra of vitreous B2O3xH2O. J. Am. Ceram. Soc. 43, 326 1960CrossRefGoogle Scholar
27Irwin, A.D., Holmgren, J.S., Zerda, T.W. Jonas, J.: Spectroscopic investigations of borosiloxane bond formation in the sol-gel process. J. Non-Cryst. Solids 89, 191 1987CrossRefGoogle Scholar
28Grosso, D., Cagnol, F., Soler-Illia, G., Crepaldi, E.L., Amenitsch, H., Brunet-Bruneau, A., Bourgeois, A. Sanchez, C.: Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14, 309 2004CrossRefGoogle Scholar