Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T05:08:49.801Z Has data issue: false hasContentIssue false

Extended x-ray absorption fine structure study of incorporation of Bi and Pb atoms into the crystal structure of Ba4.5Nd9Ti18O54

Published online by Cambridge University Press:  31 January 2011

M. Valant
Affiliation:
“Jožef Stefan” Institute, Jamova 39, University of Ljubljana, 1000 Ljubljana, Slovenia
I. Arčon
Affiliation:
“Jožef Stefan” Institute, Jamova 39, University of Ljubljana, 1000 Ljubljana, Slovenia
D. Suvorov
Affiliation:
“Jožef Stefan” Institute, Jamova 39, University of Ljubljana, 1000 Ljubljana, Slovenia
A. Kodre
Affiliation:
“Jožef Stefan” Institute, Jamova 39, University of Ljubljana, 1000 Ljubljana, Slovenia
T. Negas
Affiliation:
Trans-Tech Inc., Adamstown, Maryland 21702
R. Frahm
Affiliation:
Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen Synchrotron DESY, Hamburg, Germany
Get access

Abstract

In the extended x-ray absorption fine structure (EXAFS) study of the local environment of Bi3+ and Pb2+ ions incorporated in Ba4.5Nd9Ti18O54, actual sites of Bi- and Pb-incorporation are determined. Evidence is given that dopant ions are not distributed randomly on all theoretically possible sites; Bi3+ selectively enters one out of three possible channels, corresponding to the sites x = 0.9484, y = 0.2500, z = 0.2939, and/or x = 0.0455, y = 0.2500, z = 0.6928 previously occupied by Nd3+, while Pb2+ selectively enters site x = 0.4940, y = 0.2500, and z = 0.4993 previously shared by Ba2+ and Nd3+.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kolar, D. and Suvorov, D., Eur. J. Solid State Chem. 32, 751 (1995).Google Scholar
2.Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc. 67 (4), 78 (1984).CrossRefGoogle Scholar
3.Negas, T. and Davies, P. K., Ceram. Trans. 53, 179 (1995).Google Scholar
4.Kolar, D., Gaberšček, S., Stadler, Z., and Suvorov, D., Ferroelectrics 27, 269 (1980).CrossRefGoogle Scholar
5.Wersing, W., in Electronic Ceramics (Elsevier Sci. Pub., New York, 1991), p. 79.Google Scholar
6.Suvorov, D., Valant, M., and Kolar, D., Ceram. Trans. 53, 197 (1995).Google Scholar
7.Matveeva, R. G., Varfolomeev, M. B., and Il'yuhchenko, L. S., Russ. J. Inorg. Chem. 29 (1), 17 (1984).Google Scholar
8.Kolar, D., Gaberšček, S., and Suvorov, D., in Third Euro-Ceramics: Properties of Ceramics, edited by Durand, P. and Fernandez, J. F. (Proc. Third European Ceram. Soc. Conf., Madrid, Spain, 1993), Vol. 2, p. 229.Google Scholar
9.Azough, F., Setasuwon, P., and Freer, R., Ceram. Trans. 53, 215 (1995).Google Scholar
10.Rawn, C. J., Dissertation, The University of Arizona (1995).Google Scholar
11.Stern, E. A., Newville, M., Ravel, B., Yacoby, Y., and Haskel, D., Physica B 208&209, 117 (1995).CrossRefGoogle Scholar
12.Rehr, J. J., Albers, R. C., Zabinsky, S. I., Phys. Rev. Lett. 69, 3397 (1992).CrossRefGoogle Scholar