Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T23:14:52.583Z Has data issue: false hasContentIssue false

Extended solubility of CoO in ZnO and effects on magnetic properties

Published online by Cambridge University Press:  01 March 2006

Tobias A. Schaedler*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050
Ashutosh S. Gandhi
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050
Mitsuhiro Saito
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart 70569, Germany
Manfred Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart 70569, Germany
Richard Gambino
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794-2275
Carlos G. Levi
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The metastable solid solubility extension of CoO in ZnO (wurtzite) was investigated in precursor-derived powders as well as in thin films grown on sapphire substrates by pulsed laser deposition. A maximum solubility of 30% Co2+ in ZnO was achieved in the powders. Transmission electron microscopy (TEM) of the films revealed them to have grown epitaxially and retained up to nearly 40% CoO in solid solution, but some Co2+ precipitated as rock-salt. The temperature dependence of the metastable solubility limit in the ZnO–CoO system was assessed and is discussed in terms of the relevant thermodynamic factors. The magnetic properties of n-type conductive Zn0.79Co0.2Al0.01Ofilms were studied, yielding evidence of a ferromagnetic phase with a TC of 25 K and a second, magnetically ordered, phase with positive exchange and arguably a TC of ∼250 K. Connections between the properties and microstructural observations in high resolution TEM are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sato, K., Katayama-Yoshida, H.: Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica B 308, 904 (2001).CrossRefGoogle Scholar
2.Spaldin, N.: Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys. Rev. B 69, 125201-1 (2004).CrossRefGoogle Scholar
3.Sato, K., Katayama-Yoshida, H.: Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe-, and ZnTe-based diluted magnetic semiconductors. Phys. Status Solidi B 229, 673 (2002).3.0.CO;2-7>CrossRefGoogle Scholar
4.Lee, A., Chang, K.J.: Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys. Rev. B 69, 085205 (2004).CrossRefGoogle Scholar
5.Janisch, R., Gopal, P., Spaldin, N.A.: Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys.: Condens. Matter 17, R1 (2005).Google Scholar
6.Bates, C.H., White, W.B., Roy, R.: The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe2+ in tetrahedral fields. J. Inorg. Nucl. Chem. 28, 397 (1966).CrossRefGoogle Scholar
7.Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).CrossRefGoogle ScholarPubMed
8.Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).CrossRefGoogle ScholarPubMed
9.Jayaram, V., Rajkumar, J., Rani, B.S.: Synthesis of metastable, wurtzite-based zinc oxide-cobalt(II) oxide solid solutions by spray pyrolysis. J. Am. Ceram. Soc. 82, 473 (1999).CrossRefGoogle Scholar
10.Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
11.Yang, S., Pakhomov, A., Hung, S., Wong, C.: Room temperature magnetism in sputtered (Zn,Co)O films. IEEE Trans. Magn. 38, 2877 (2002).CrossRefGoogle Scholar
12.Ramachandran, S., Tiwari, A., Narayan, N.: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255 (2004).CrossRefGoogle Scholar
13.Jin, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001).CrossRefGoogle Scholar
14.Kim, J.H., Kim, H., Kim, D., Ihm, Y.E., Choo, W.K.: Magnetic properties of epitaxially grown semiconducting Zn1−xCox O thin films by pulsed laser ablation. J. Appl. Phys. 92, 6066 (2002).CrossRefGoogle Scholar
15.Tuan, A.C., Bryan, J.D., Pakhomov, A.B., Shutthanandan, V., Thevuthasan, S., McCready, D.E., Gaspar, D., Engelhard, M.H., Rogers, J.W. Jr.Krishnan, K., Gamelin, D.R., Chambers, S.A.: Epitaxial growth and properties of cobalt-doped ZnO on α–Al2O3 single-crystal substrates. Phys. Rev. B 70, 054424 (2004).CrossRefGoogle Scholar
16.Schwartz, D.A., Gamelin, D.R.: Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv. Mater. 16, 2115 (2004).CrossRefGoogle Scholar
17.Levi, C.G.: Metastability and microstructure evolution in the synthesis of inorganics from precursors. Acta Mater. 46, 787 (1998).CrossRefGoogle Scholar
18.Srikant, V., Sergo, W., Clarke, D.R.: Epitaxial aluminum-doped zinc oxide thin films on sapphire: I. Effect of substrate orientation. J. Am. Ceram. Soc. 78, 1931 (1995).CrossRefGoogle Scholar
19.Ramesh, A., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., Tarascon, J.M.: Epitaxial cuprate superconductor/ferroelectric heterostructures. Science 252, 944 (1991).CrossRefGoogle ScholarPubMed
20.Srikant, V., Sergo, V., Clarke, D.R.: Epitaxial aluminum-doped zinc oxide thin films on sapphire: II. Defect equilibria and electrical properties. J. Am. Ceram. Soc. 78, 1935 (1995).CrossRefGoogle Scholar
21.Zhang, Z.: Max Planck Institut für Metallforschung (unpublished).Google Scholar
22.Bentley, J., McKernan, S., Carter, C.B., Revcolevschi, A. Microanalysis of an oxidized cobalt oxide-zirconia eutectic, in Electron Microscopy and Analysis 1993, edited by Craven, A.J. (Institute of Physics Publishing, Bristol, UK, 1993), p. 39.Google Scholar
23.Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P., Hofer, F.: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469 (2003).CrossRefGoogle ScholarPubMed
24.Cullity, B.D.: Introduction to Magnetic Materials, 1st ed. (Addison-Wesley Publishing Company, Reading, MA, 1972), pp. 93, 98.Google Scholar
25.Navrotsky, A., Muan, A.: Activity composition relations in the systems CoO–ZnO and NiO–ZnO at 1050 °C. J. Inorg. Nucl. Chem. 33, 35 (1971).CrossRefGoogle Scholar
26.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
27.Grimes, R.W., Lagerlöf, K.P.D.: Polymorphs of cobalt oxide. J. Am. Ceram. Soc. 74, 270 (1991).CrossRefGoogle Scholar
28.Risbud, A.S., Spaldin, N.A., Chen, Z.Q., Stemmer, S., Seshadri, R.: Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003).CrossRefGoogle Scholar
29.Jung, I., Decterov, S.A., Pelton, A.D., Kim, H., Kang, Y.: Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater. 52, 507 (2004).CrossRefGoogle Scholar
30.Cheng, M., Hallstedt, B., Gauckler, L.J.: Thermodynamic assessment of the Co–O system. J. Phase Equilib. 24, 212 (2003).CrossRefGoogle Scholar
31.Lide, D.R.: CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, FL, 2001).Google Scholar
32.Zabdyr, L.A., Fabrichnaya, O.: Phase equilibria in the cobalt oxide-copper oxide system. J. Phase Equilib. 23, 149 (2002).CrossRefGoogle Scholar
33.Navrotsky, A.: Lattice stability of AX and AB2O4 compounds. Calphad 4, 255 (1980).CrossRefGoogle Scholar