Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T13:50:07.476Z Has data issue: false hasContentIssue false

Explosive shock processing of Pr2Fe14B/α–Fe exchange-coupled nanocomposite bulk magnets

Published online by Cambridge University Press:  01 March 2005

Z.Q. Jin
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; and Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
N.N. Thadhani*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
M. McGill
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Y. Ding
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Z.L. Wang
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
M. Chen
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598; and Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
H. Zeng
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598; and Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
V.M. Chakka
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
J.P. Liu
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Explosive shock compaction was used to consolidate powders obtained from melt-spun Pr2Fe14B/α–Fe nanocomposite ribbons, to produce fully dense cylindrical compacts of 17–41-mm diameter and 120-mm length. Characterization of the compacts revealed refinement of the nanocomposite structure, with approximately 15 nm uniformly sized grains. The compact produced at a shock pressure of approximately 1 GPa maintained a high coercivity, and its remanent magnetization and maximum energy product were measured to be 0.98 T and 142 kJ/m3, respectively. The compact produced at 4–7 GPa showed a decrease in magnetic properties while that made at 12 GPa showed a magnetic softening behavior. However, in both of these cases, a smooth hysteresis loop implying exchange coupling and a coercivity of 533 kA/m were fully recovered after heat treatment. The results illustrate that the explosive compaction followed by post-shock heat treatment can be used to fabricate exchange-coupled nanocomposite bulk magnets with optimized magnetic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wecker, J., Schnitzke, K., Cerva, H. and Grogger, W.: Nanostructured Nd–Fe–B magnets with enhanced remanence. App. Phys. Lett. 67, 563 (1995).Google Scholar
2.Coehoorn, R., de Mooij, D.B., Duchateau, J.P.W.B., and Buschow, K.H.J.: Novel permanent magnetic-materials made by rapid quenching. J. Phys. C 49, 669 (1988).Google Scholar
3.Kneller, E.F. and Hawig, R.: The exchange-spring magnet—A new material principle for permanent-magnets. IEEE Trans. Magn. 27, 3588 (1991).CrossRefGoogle Scholar
4.Goll, D., Seeger, M. and Kronmüller, H.: Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J. Magn. Magn. Mater. 185, 49 (1998).CrossRefGoogle Scholar
5.Wang, Z.C., Davies, H.A. and Harland, C.L.: Crystallization behavior and magnetic properties of melt-spun Prx(Fe0.8Co0.2)94−xB6 alloys. IEEE Trans. Magn. 38, 2967 (2002).Google Scholar
6.Liu, J.P., Luo, C.P., Liu, Y. and Sellmyer, D.J.: High energy products in rapidly annealed nanoscale Fe/Pt multilayers. Appl. Phys. Lett. 72, 483 (1998).CrossRefGoogle Scholar
7.Zeng, H., Li, J., Liu, J.P., Wang, Z.L. and Sun, S.H.: Exchange-coupled nanocomposite magnets by nanoparticles self-assembly. Nature 420, 395 (2002).CrossRefGoogle ScholarPubMed
8.Jin, Z.Q., Cui, B.Z., Liu, J.P., Ding, Y., Wang, Z.L. and Thadhani, N.N.: Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14B/α–Fe nanocomposites. Appl. Phys. Lett. 84, 4382 (2004).CrossRefGoogle Scholar
9.Guruswamy, S., McCarter, M.K., Shield, J.E. and Panchanathan, V.: Explosive compaction of magnequench Nd–Fe–B magnetic powders. J. Appl. Phys. 79, 4851 (1996).CrossRefGoogle Scholar
10.Leonowicz, M., Kaszuwara, W., Lezierska, E., Januszewski, D., Mendoza, G., Davies, H.A. and Paszula, J.: Application of the shock compaction technique for consolidation of hard magnetic powders. J. Appl. Phys. 83, 6634 (1998).CrossRefGoogle Scholar
11.Oda, H., Hirai, H., Kondo, K. and Sato, T.: Magnetic-properties of shock-compacted high-coercivity magnets with a nanometer-sized microstructure. J. Appl. Phys. 76, 3381 (1994).Google Scholar
12.Saito, T.: Production of bulk materials of an Nd4Fe77.5B18.5 alloy and their magnetic properties. IEEE Tran Magn. 37, 2561 (2001).CrossRefGoogle Scholar
13.Gourdin, W.H.: Dynamic consolidation of metal powders. Prog. Mater. Sci. 31, 39 (1986).Google Scholar
14.Ando, S., Mine, Y., Takashima, K., Itoh, S. and Tonda, H.: Explosive compaction of Nd-Fe-B powder. J. Mater. Process. Technol. 85, 42 (1999).CrossRefGoogle Scholar
15.Mashimo, T., Huang, X., Hirosawa, S., Makita, K., Kato, Y., Mitsudo, S. and Motokawa, M.: Magnetic properties of fully dense Sm2Fe17Nx magnets prepared by shock compression. J. Magn. Magn. Mater. 210, 109 (2000).CrossRefGoogle Scholar
16.Jin, Z.Q., Chen, K.H., Li, J., Zeng, H., Cheng, S-F., Liu, J.P., Wang, Z.L. and Thadhani, N.N.: Shock compression response of magnetic nanocomposite powders. Acta Mater. 52, 2147 (2004).CrossRefGoogle Scholar
17.Chen, K.H., Jin, Z.Q., Li, J., Kennedy, G., Wang, Z.L., Thadhani, N.N., Zeng, H., Cheng, S-F. and Liu, J.P.: Bulk nanocomposite magnets produced by dynamic shock compaction. J. Appl. Phys. 96, 1276 (2004).CrossRefGoogle Scholar
18.Meyers, M.A. and Wang, S.L.: An improved method for shock consolidation of powders. Acta Metall. 36, 925 (1988).Google Scholar
19. AUTODYN-2D/2.8, Non-Linear dynamic modeling software (Century Dynamics Inc., Oakland, CA, 1995).Google Scholar
20.Hermann, W.: Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40, 2490 (1969).CrossRefGoogle Scholar
21.Chau, R., Maple, M.B. and Nellis, W.J.: Shock compaction of SmCo5 particles. J. Appl. Phys. 79, 9236 (1996).CrossRefGoogle Scholar
22.Jin, Z.Q., Okumura, H., Muñoz, J.S., Zhang, Y., Wang, H.L. and Hadjipanayis, G.C.: Multi-step crystallization evolution in nanocomposite Pr8Fe86B6 alloys. J. Phys. D: Appl. Phys. 35, 2893 (2002).Google Scholar
23.Shkuratov, S.I., Talantsev, E.F., Dickens, J.C., Kristiansen, M. and Baird, J.: Longitudinal-shock-wave compression of Nd2Fe14B high-energy hard ferromagnet: The pressure-induced magnetic phase transition. Appl. Phys. Lett. 82, 1248 (2003).CrossRefGoogle Scholar
24.Meyers, M.A.: Dynamic Behavior of Materials (John Wiley & Sons, New York, 1994), p. 382.CrossRefGoogle Scholar
25.Thadhani, N.N.: Shock-induced and shock-assisted solid-state chemical-reactions in powder mixtures. J. Appl. Phys. 76, 2129 (1994).Google Scholar
26.Li, J., Jin, Z.Q., Liu, J.P., Wang, Z.L. and Thadhani, N.N.: Amorphization and ultrafine-scale recrystallization in shear bands formed in shock-consolidated Pr2Fe14B/α–Fe nanocomposite magnets. Appl. Phys. Lett. 85, 2223 (2004).Google Scholar
27.Sun, X.K., Zhang, J., Chu, Y.L., Liu, W., Cui, B.Z. and Zhang, Z.D.: Dependence of magnetic properties on grain size of alpha-Fe in nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5.5/α–Fe magnets. Appl. Phys. Lett. 74, 1740 (1999).Google Scholar
28.Kronmüller, H., Fischer, R., Seeger, M. and Zern, A.: Micromagnetism and microstructure of hard magnetic materials. J. Phys. D: Appl. Phys. 29, 2274 (1996).CrossRefGoogle Scholar
29.Shkuratov, S.I., Talantsev, E.F., Dickens, J.C. and Kristiansen, M.: Transverse shock wave demagnetization of Nd2Fe14B high-energy hard ferromagnetics. J. Appl. Phys. 92, 159 (2003).Google Scholar
30.Chen, Z.H., Zhang, J.X. and Kronmüller, H.: Magnetically soft phase in magnetization reversal processes of nanocomposite Sm2Fe15Ga2Cx /α–Fe permanent magnetic materials. Phys. Rev. B 68, 144417 (2003).CrossRefGoogle Scholar
31.Bauer, J., Seeger, M., Zern, A. and Kronmüller, H.: Nanocrystalline FeNdB permanent magnets with enhanced remanence. J. Appl. Phys. 80, 1667 (1996).CrossRefGoogle Scholar
32.Gao, R.W., Feng, W.C., Liu, H.Q., Wang, B., Chen, W., Han, G.B., Zhang, P., Li, H., Li, W., Guo, Y.Q., Pan, W., Li, X.M., Zhu, M.G. and Li, X.: Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials. J. App. Phys. 94, 664 (2003).Google Scholar
33.Moskowitz, B.M.: Micromagnetic study of the influence of crystal defects on coercivity in magnetite. J. Geophys. Res-Solid Earth. 98, 18011 (1993).Google Scholar
34.Abdelaal, M.M.: Magnetic-behavior of Y2Fe14−xTxB compounds, where T = Al, Ti, V, Cr, Mn, Co or Ni. J. Magn. Magn. Mater. 131, 148 (1994).Google Scholar