Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T03:20:56.681Z Has data issue: false hasContentIssue false

Excitonic transport in ZnO

Published online by Cambridge University Press:  14 June 2012

Martin Noltemeyer*
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Frank Bertram
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Thomas Hempel
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Barbara Bastek
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Andrey Polyakov
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Juergen Christen
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39116 Magdeburg, Germany
Matthias Brandt
Affiliation:
Institut für Experimentelle Physik II, University Leipzig, 04009 Leipzig, Germany
Michael Lorenz
Affiliation:
Institut für Experimentelle Physik II, University Leipzig, 04009 Leipzig, Germany
Marius Grundmann
Affiliation:
Institut für Experimentelle Physik II, University Leipzig, 04009 Leipzig, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The temperature dependence of diffusion length, lifetime, and diffusivity of the free exciton is measured in a commercial ZnO-substrate as well as in an epitaxial ZnO quantum well using nm-spatially and ps-time-resolved cathodoluminescence spectroscopy. The characteristic temperature dependence of the exciton mobility gives information of the underlying excitonic scattering processes. Since excitons are neutral particles, scattering at ionized impurities should be not effective. On both samples, with decreasing temperature, the diffusion lengths, lifetimes, and diffusivity give rise to a monotonic increase of the excitonic mobility. Two different methods will be discussed and are used for determining the excitonic transport parameters. On the one hand, we are able to perform completely pulsed excitation experiments, and on the other hand, a combination of cw excitation and pulsed excitation in two independent measurements is used.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frenzel, H., Lajin, A., von Wenckstern, H., Lorenz, M., Schein, F., Zhang, Z.Z., and Grundmann, M.: Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv. Mater. 22, 47 (2010).Google ScholarPubMed
2.Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S-J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
3.Reynolds, D.C., Litton, C.W., and Collins, T.C.: Zeeman effects in the edge emission and absorption of ZnO. Phys. Rev. 140(5A), 17261734 (1965).CrossRefGoogle Scholar
4.Meyer, B.K., Alves, H., Hoffmann, D.M., Kriegsels, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V.: Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 241(2), 231 (2004).CrossRefGoogle Scholar
5.Look, D.C., Reynolds, D.C., Fang, Z-Q., Hemsky, J.W., Sizelove, J.R., and Jones, R.L.: Point defect characterization of GaN and ZnO. Mater. Sci. Eng., B 66, 3032 (1999).CrossRefGoogle Scholar
6.Araújo, D., Oelgart, G., Ganière, J-D., and Reinhart, F.K.: Comparison of the lateral carrier transport between a GaAs single quantum well and the AlGaAs barrier during cathodoluminescence excitation. J. Appl. Phys. 76, 348 (1994).CrossRefGoogle Scholar
7.Hillmer, H., Kuhn, T., Laurich, B., Forchel, A., and Mahler, G.: Experimental and theoretical investigations of free exciton transport in Si. Phys. Scr. 35, 520523 (1987).CrossRefGoogle Scholar
8.Hwang, J-S., Donatini, F., Pernot, J., Thierry, R., Ferret, P., and Dang, L.S.: Carrier depletion and exciton diffusion in a single ZnO nanowire. Nanotechnology 22, 475704 (2011).CrossRefGoogle Scholar
9.Oberhauser, D., Pantke, K-H., Hvam, J.M., Weidmann, G., and Klingshirn, C.: Exciton scattering in quantum wells at low temperatures. Phys. Rev. B 47, 11 (1993).CrossRefGoogle ScholarPubMed
10.Molnar, R.J., Lei, T., and Moustakas, T.D.: Electron transport mechanism in Gallium nitride. Appl. Phys. Lett. 6, 72 (1993).CrossRefGoogle Scholar
11.Hillmer, H., Hansmann, S., Forchel, A., Morohashi, M., Lopez, E., Meier, H.P., and Ploog, K.: Two-dimensional exciton transport in GaAs/GaAlAs quantum wells. Appl. Phys. Lett. 53, 20 (1988).CrossRefGoogle Scholar
12.Hillmer, H., Forchel, A., Sauer, R., and Tu, C.W.: Interface-roughness-controlled exciton mobilities in GaAs/Al0.37Ga0.63As quantum wells. Phys. Rev. B 42, 5 (1990).CrossRefGoogle ScholarPubMed
13.Kanaya, K. and Okayama, S.: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 5, 4358 (1972).CrossRefGoogle Scholar
14.Zarem, H.A., Sercel, P.C., Lebens, J.A., Eng, L.E., Yariv, A., and Vahala, J.: Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1-xAs. Appl. Phys. Lett. 55, 16 (1988).Google Scholar
15.Tang, Y., Rich, D.H., Moy, A.M., and Cheng, K.Y.: An optical method for studying carrier diffusion in strained (InP)2/(GaP)2 quantum wires. Appl. Phys. Lett. 71, 1 (1998).Google Scholar
16.Bertram, F., Christen, J., Dadgar, A., and Krost, A.: Complex excitonic recombination kinetics in ZnO: Capture, relaxation, and recombination from steady state. Appl. Phys. Lett. 90, 041917 (2007).CrossRefGoogle Scholar
17.Boer, K.W.: Survey of semiconductor physics, in Electrons and Other Particles in Semiconductors (Wiley-Interscience Publication John Wiley & Sons, Inc., New York, NY, Vol. 1, 2002).Google Scholar
18.Brandt, M., Lange, M., Stölzel, M., Müller, A., Brenndorf, G., Zippel, J., Lenzner, J., Lorenz, M., and Grundmann, M.: Control of interface abruptness of polar MgZnO/ZnO quantum wells grown by pulsed laser deposition. Appl. Phys. Lett. 97, 052101 (2010).CrossRefGoogle Scholar