Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T19:01:21.126Z Has data issue: false hasContentIssue false

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition

Published online by Cambridge University Press:  02 January 2013

Xudong Wang*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
Jian Shi
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO2 one-dimensional nanostructures. SPCVD uses separated TiCl4 and H2O precursor pulses, and the anisotropic growth of TiO2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO2 nanorods (NRs) inside highly confined spaces. The phase of TiO2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO2NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Jiu, J.T., Isoda, S., Wang, F.M., and Adachi, M.: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).Google Scholar
Khan, S.U.M., Al-Shahry, M., and Ingler, W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).CrossRefGoogle ScholarPubMed
Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).Google Scholar
Hwang, Y.J., Boukai, A., and Yang, P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).Google Scholar
Adachi, M., Murata, Y., Takao, J., Jiu, J.T., Sakamoto, M., and Wang, F.M.: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the tnq#x201C;oriented attachmenttnq#x201D; mechanism. J. Am. Chem. Soc. 126, 14943 (2004).Google Scholar
Zuruzi, A.S., Kolmakov, A., MacDonald, N.C., and Moskovits, M.: Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett. 88, 102904 (2006).Google Scholar
Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., and Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).CrossRefGoogle Scholar
Liu, J.W., Kuo, Y.T., Klabunde, K.J., Rochford, C., Wu, J., and Li, J.: Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1, 1645 (2009).CrossRefGoogle ScholarPubMed
Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).CrossRefGoogle Scholar
Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., and Yang, P.D.: ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).Google Scholar
Greene, L.E., Law, M., Yuhas, B.D., and Yang, P.D.: ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 111, 18451 (2007).Google Scholar
Barnard, A.S. and Zapol, P.: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B 108, 18435 (2004).CrossRefGoogle Scholar
Barnard, A.S. and Curtiss, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).Google Scholar
Miao, Z., Xu, D.S., Ouyang, J.H., Guo, G.L., Zhao, X.S., and Tang, Y.Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).CrossRefGoogle Scholar
Zhang, Y.X., Li, G.H., Jin, Y.X., Zhang, Y., Zhang, J., and Zhang, L.D.: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300 (2002).Google Scholar
Formo, E., Lee, E., Campbell, D., and Xia, Y.N.: Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668 (2008).Google Scholar
Hosono, E., Fujihara, S., Kakiuchi, K., and Imai, H.: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).Google Scholar
Bavykin, D.V., Friedrich, J.M., and Walsh, F.C.: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).Google Scholar
Yoshida, R., Suzuki, Y., and Yoshikawa, S.: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).Google Scholar
Chen, G.Y., Lee, M.W., and Wang, G.J.: Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode. Int. J. Photoenergy 2010, 585621 (2010).Google Scholar
Feng, X.J., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).Google Scholar
Wu, J.M., Shih, H.C., Wu, W.T., Tseng, Y.K., and Chen, I.C.: Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 281, 384 (2005).Google Scholar
Amin, S.S., Nicholls, A.W., and Xu, T.T.: A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007).CrossRefGoogle Scholar
Ha, J.Y., Sosnowchik, B.D., Lin, L.W., Kang, D.H., and Davydov, A.V.: Patterned growth of TiO2 nanowires on titanium substrates. Appl. Phys. Express 4, 065002 (2011).CrossRefGoogle Scholar
Kim, M.H., Baik, J.M., Zhang, J.P., Larson, C., Li, Y.L., Stucky, G.D., Moskovits, M., and Wodtke, A.M.: TiO2 nanowire growth driven by phosphorus-doped nanocatalysis. J. Phys. Chem. C 114, 10697 (2010).CrossRefGoogle Scholar
Pradhan, S.K., Reucroft, P.J., Yang, F.Q., and Dozier, A.: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).Google Scholar
Shi, J., Sun, C.L., Starr, M.B., and Wang, X.D.: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11, 624 (2011).Google Scholar
George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).Google Scholar
Danon, A., Bhattacharyya, K., Vijayan, B.K., Lu, J.L., Sauter, D.J., Gray, K.A., Stair, P.C., and Weitz, E.: Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).Google Scholar
Shi, J., Hara, Y., Sun, C.L., Anderson, M.A., and Wang, X.D.: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 11, 3413 (2011).Google Scholar
Ritala, M., Leskela, M., Nykanen, E., Soininen, P., and Niinisto, L.: Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288 (1993).Google Scholar
Shi, J. and Wang, X.: Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).Google Scholar
Takabayashi, S., Nakamura, R., and Nakato, Y.: A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol., A 166, 107 (2004).Google Scholar