Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T16:10:40.387Z Has data issue: false hasContentIssue false

Evolution of dislocation structure during inverse creep of a nickel aluminide: Ni–23.5 Al–0.5 Hf–0.2B (at. %)

Published online by Cambridge University Press:  31 January 2011

J. H. Schneibel
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. A. Horton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

A well-annealed polycrystalline nickel aluminide of composition Ni–23.5Al–0.5 Hf–0.2B (at. %) shows inverse creep behavior at 1033 K and 250 MPa. The minimum creep rate does not correspond to a steady-state creep condition. The increase in the creep rate with strain and time is accompanied by an increase in the volume fraction of dislocation-containing regions. The inverse transient can be eliminated by prestraining at room temperature. It is absent in the diffusional creep regime.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pope, D. P. and Ezz, S. S.Int. Metall. Rev. 29, 136 (1984).CrossRefGoogle Scholar
2Nicholls, J. R. and Rawlings, R. D.J. Mater. Sci. 12, 2456 (1977).CrossRefGoogle Scholar
3Schneibel, J. H.Petersen, G. F. and Liu, C. T.J. Mater. Res. 1, 68 (1986).CrossRefGoogle Scholar
4Sherby, O. D. and Burke, P. M.Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
5Cannon, W. R. and Sherby, O. D.Metall. Trans. 1, 1030 (1970).CrossRefGoogle Scholar
6Davies, R. G. and Johnston, T. L. in Ordered Alloys, edited by Kear, B. H.Sims, C. T.Stoloff, N. S. and Westbrook, J. H. (Claitor, Baton Rouge, LA, 1970), pp. 447–70.Google Scholar
7Ham, R. K.Cook, R. H.Purdy, G. R. and Willoughby, G.Metal Sci. J. 6, 205 (1972).Google Scholar
8Schneibel, J. H. and Martinez, L. in Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Evans, R. W. (The Institute of Metals, London, 1987), pp. 203–16.Google Scholar
9Schneibel, J. H. and Martinez, L. in Proceedings of the Materials Research Society Symposium on High-Temperature Ordered Inter-metallic Alloys II, edited by Stoloff, N. S.Koch, C. C.Liu, C. T. and Izumi, O. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, p. 297.Google Scholar
10Liu, C. T. and White, C. L. in the Proceedings of the Materials Research Society Symposium on High-Temperature Ordered Interme-tallic Compounds, edited by Koch, C. C.Liu, C. T. and Stoloff, N. S. (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39, pp. 365–80.Google Scholar
11Horton, J. A. and Liu, C. T.Acta Metall. 33, 2191 (1985).CrossRefGoogle Scholar
12Baker, I. and Schulson, E. M.Phys. Status Solidi A 85, 481 (1984).CrossRefGoogle Scholar
13Nowick, A. S. and Berry, B. S.Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972), p. 435.Google Scholar
14Takeuchi, S. and Argon, A. S.J. Mater. Sci. 11, 1542 (1976).CrossRefGoogle Scholar
15Matsunoand, N.Oikawa, H.Scr. Metall. 15, 319 (1981).Google Scholar
16Orlova, A. and Cadek, J.Z. Metallkd. 65, 200 (1974).Google Scholar
17Nix, W. D. and Ilschner, B. in Proceedings of the 5th International Conference on the Strength of Metals and Alloys, edited by Haasen, P., Gerold, V. and Kostorz, G. (Pergamon, Oxford, 1979), Vol. 3, pp. 1503–30.CrossRefGoogle Scholar
18Wolf, H. and Blum, W. in Ref. 8, pp. 649–62.Google Scholar
19Derby, B. and Ashby, M. F.Acta Metall. 35, 1349 (1987).CrossRefGoogle Scholar
20Hopgood, A. A. and Martin, J. W.Mater. Sci. Eng. 82, 27 (1986).CrossRefGoogle Scholar