Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T01:20:26.672Z Has data issue: false hasContentIssue false

Evidence of critical scaling behavior during vapor phase synthesis of continuous filament composites

Published online by Cambridge University Press:  31 January 2011

J. H. Kinney*
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550
D. L. Haupt
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550
*
a)Address all correspondence to this author.
Get access

Abstract

We present experimental measurements of the accessible pore fraction in ceramic matrix composites during consolidation by vapor phase infiltration. For two topologically distinct filament architectures, the accessible pore fraction decreased during consolidation with a power law decay and a critical scaling exponent of 0.41 (R2 = 0.97). A three-dimensional analysis of the percolating pores revealed that the structures became topologically equivalent and simply connected near the critical density.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Besmann, T. M., Sheldon, B. W., Lowden, R. A., and Stinton, D. P., Science 253, 1104 (1991).CrossRefGoogle Scholar
2.Vaidyaraman, S., Lackey, W. J., Freeman, G. B., Agrawal, P. K., and Langman, M. D., J. Mater. Res. 10, 1469 (1995).CrossRefGoogle Scholar
3.Besmann, T. M., McLaughlin, J. C., and Lin, H-T., J. Nucl. Mater. 219, 31 (1995).CrossRefGoogle Scholar
4.Sahimi, M., Applications of Percolation Theory (Taylor and Francis, Bristol, PA, 1994).CrossRefGoogle Scholar
5.Stauffer, D. and Aharony, A., Introduction to Percolation Theory, 2nd ed. (Taylor and Francis, London, 1992).Google Scholar
6.Freeman, G. B., Starr, T. L., and Elston, T. C., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 49.Google Scholar
7.Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones, K. W., and Adler, P. M., Phys. Rev. Lett. 73, 2001 (1994).CrossRefGoogle Scholar
8.Kinney, J. H., Breunig, T. M., Starr, T. L., Haupt, D., Nichols, M. C., Stock, S. R., Butts, M. D., and Saroyan, R. A., Science 260, 789 (1993).CrossRefGoogle Scholar
9.Flannery, B. P., Deckman, H. W., Roberge, W. G., and D'Amico, K. L., Science 237, 1439 (1987).CrossRefGoogle Scholar
10.Bonse, U., Johnson, Q. C., Nichols, M. C., Nusshardt, R., Krasnicki, S., and Kinney, J. H., Nucl. Instrum. Methods, Phys. Res. A 246, 43 (1986).Google Scholar
11.Kinney, J. H. and Nichols, M. C., Annu. Rev. Mater. Sci. 22, 121 (1992).CrossRefGoogle Scholar
12.Kinney, J. H., Henry, C. P., Haupt, D. L., and Starr, T. L., Appl. Composite Mater. 1, 325 (1994).CrossRefGoogle Scholar
13.Hoshen, J. and Kopelman, R., Phys. Rev. B 14, 3438 (1976).CrossRefGoogle Scholar
14.Kinney, J. H., Haupt, D. L., Nichols, M. C., Marshall, S. J., and Marshall, G. W., Nucl. Instrum. Methods, Phys. Res. A 347, 480 (1994).CrossRefGoogle Scholar
15.Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., and Kleerekoper, M., J. Bone Miner. Res. 4, 3 (1989).CrossRefGoogle Scholar
16.Kurrer, C. and Schulten, K., Phys. Rev. E 48, 614 (1993).CrossRefGoogle Scholar
17.Sheldon, B. W. and Besmann, T. M., J. Am. Ceram. Soc. 74, 3046 (1991).CrossRefGoogle Scholar
18.Starr, T. L., J. Mater. Res. 10, 2360 (1995).CrossRefGoogle Scholar