Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:34:06.034Z Has data issue: false hasContentIssue false

Equilibrium ternary intermetallic phase in the Mg–Zn–Ca system

Published online by Cambridge University Press:  17 June 2016

Jake D. Cao
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
Thomas Weber
Affiliation:
Laboratory of Crystallography, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
Robin Schäublin
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
Jörg F. Löffler*
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This study investigates the ternary intermetallic phases in the Mg–Zn–Ca system, which is of great interest for metallic biodegradable implant applications. According to published phase diagrams, the key alloy composition studied herein is located within the Ca2Mg5Zn5, Ca2Mg6Zn3, and IM1 phase fields. Through controlled cooling of the melt, a quasibinary ∼Ca2Mg5Zn5–Mg microstructure was obtained. The large polygonal grains had a composition of Ca2Mg5Zn5 as determined by energy-dispersive x-ray spectroscopy (EDX). Differential scanning calorimetry revealed that Ca2Mg5Zn5 begins to form at ∼417 °C, and the eutectic temperature is ∼369 °C. Based on single-crystal x-ray diffraction data, Ca2Mg5Zn5 was determined to be hexagonal (P63/mmc), with lattice parameters of a = 9.5949(3) Å and c = 10.0344(3) Å. This was also verified by transmission electron microscopy. Further refinements, which considered the possibility of mixed Mg/Zn sites, significantly improved the data fit compared to the initial ordered structural model. The final refined structure possesses a composition of Ca16Mg42Zn42, very similar to the chemical analysis results from EDX.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 17281734 (2005).CrossRefGoogle ScholarPubMed
Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 35573563 (2005).CrossRefGoogle ScholarPubMed
Hänzi, A.C., Gerber, I., Schinhammer, M., Löffler, J.F., and Uggowitzer, P.J.: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 6, 18242833 (2010).CrossRefGoogle ScholarPubMed
Kraus, T., Fischerauer, S.F., Hänzi, A.C., Uggowitzer, P.J., Löffler, J.F., and Weinberg, A.M.: Magnesium alloys for temporary implants in osteosynthesis: In-vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 12301238 (2012).CrossRefGoogle ScholarPubMed
Zberg, B., Uggowitzer, P.J., and Löffler, J.F.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887891 (2009).CrossRefGoogle ScholarPubMed
Hofstetter, J., Becker, M., Martinelli, E., Weinberg, A.M., Mingler, B., Kilian, H., Pogatscher, S., Uggowitzer, P.J., and Löffler, J.F.: High-strength low-alloy (HSLA) Mg–Zn–Ca alloys with excellent biodegradation performance. JOM 66, 566572 (2014).CrossRefGoogle Scholar
Hofstetter, J., Martinelli, E., Pogatscher, S., Schmutz, P., Povoden-Karadeniz, E., Weinberg, A.M., Uggowitzer, P.J., and Löffler, J.F.: Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 23, 347353 (2015).CrossRefGoogle ScholarPubMed
Bakhsheshi-Rad, H.R., Abdul-Kadir, M.R., Idris, M.H., and Farahany, S.: Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys. Corros. Sci. 64, 184197 (2012).CrossRefGoogle Scholar
Bakhsheshi-Rad, H.R., Hamzah, E., Fereidouni-Lotfabadi, A., Daroonparvar, M., Yajid, M.A.M., Mezbahul-Islam, M., Kasiri-Asgarani, M., and Medraj, M.: Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications. Mater. Corros. 65, 11781187 (2014).CrossRefGoogle Scholar
Hagihara, K., Shakudo, S., Fujii, K., and Nakano, T.: Degradation behavior of Ca–Mg–Zn intermetallic compounds for use as biodegradable implant materials. Mater. Sci. Eng., C 44, 285292 (2014).CrossRefGoogle ScholarPubMed
Gu, X., Zheng, Y., Zhong, S., Xi, T., Wang, J., and Wang, W.: Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31, 10931103 (2010).CrossRefGoogle ScholarPubMed
Xie, X., Wang, X., Wang, Y., Zhang, G., He, Y., Zheng, Y., and Qin, L.: Ca–Mg–Zn metallic glass as degradable biomaterials developed for potential orthopaedic applications. Bone 47, 425 (2010).CrossRefGoogle Scholar
Hänzi, A.C., Sologubenko, A.S., Gunde, P., Schinhammer, M., and Uggowitzer, P.J.: Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys. Philos. Mag. Lett. 92, 417427 (2012).CrossRefGoogle Scholar
Hänzi, A.C., Dalla Torre, F.H., Sologubenko, A.S., Gunde, P., Schmid-Fetzer, R., Kuehlein, M., Löffler, J.F., and Uggowitzer, P.J.: Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 89, 377390 (2009).CrossRefGoogle Scholar
Hofstetter, J., Rüedi, S., Baumgartner, I., Kilian, H., Mingler, B., Povoden-Karadeniz, E., Pogatscher, S., Uggowitzer, P.J., and Löffler, J.F.: Processing and microstructure-property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys. Acta Mater. 98, 423432 (2015).CrossRefGoogle Scholar
Lu, Y., Bradshaw, A.R., Chiu, Y.L., and Jones, I.P.: Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng., C 48, 480486 (2015).CrossRefGoogle ScholarPubMed
Ralston, K.D. and Birbilis, N.: Effect of grain size on corrosion: A review. Corrosion 66, 0750051 (2010).CrossRefGoogle Scholar
Paris, R.: Publications scientifiques et techniques du minist'ere de l'air, Ministere de L'Air, 1–86 (1934).Google Scholar
Clark, J.B.: The solid constitution in the magnesium-rich region of the Mg–Ca–Zn phase diagram. Trans. Metall. Soc. AIME 221, 644645 (1961).Google Scholar
Clark, J.B.: Joint Committee on Powder Diffraction Standards (JCPDS) Card. 12-266 (1961).Google Scholar
Clark, J.B.: Joint Committee on Powder Diffraction Standards (JCPDS) Card. 12-569 (1961).Google Scholar
Larionova, T.V., Park, W-W., and You, B-S.: A ternary phase observed in rapidly solidified Mg–Ca–Zn alloys. Scr. Mater. 45, 712 (2001).CrossRefGoogle Scholar
Jardim, P.M., Solórzano, G., and Sande, J.B.V.: Precipitate crystal structure determination in melt spun Mg–1.5wt%Ca–6wt%Zn alloy. Microsc. Microanal. 8, 487496 (2002).CrossRefGoogle ScholarPubMed
Jardim, P.M., Solórzano, G., and Sande, J.B.V.: Second phase formation in melt-spun Mg–Ca–Zn alloys. Mater. Sci. Eng., A 381, 196205 (2004).CrossRefGoogle Scholar
Oh-ishi, K., Watanabe, R., Mendis, C.L., and Hono, K.: Age-hardening response of Mg–0.3 at.% Ca alloys with different Zn contents. Mater. Sci. Eng., A 526, 177184 (2009).CrossRefGoogle Scholar
Naghdi, F. and Mahmudi, R.: Effect of solution treatment on the microstructural evolution and mechanical properties of an aged Mg–4Zn–0.3Ca alloy. Mater. Sci. Eng., A 631, 144152 (2015).CrossRefGoogle Scholar
Zhang, Y-N., Kevorkov, D., Bridier, F., and Medraj, M.: Morphological and crystallographic characterizations of the Ca–Mg–Zn intermetallics appearing in ternary diffusion couples. Adv. Mater. Res. 409, 387392 (2012).CrossRefGoogle Scholar
Zhang, Y-N., Kevorkov, D., Li, J., Essadiqi, E., and Medraj, M.: Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca–Mg–Zn system. Intermetallics 18, 24042411 (2010).CrossRefGoogle Scholar
Zhang, Y-N., Kevorkov, D., Liu, X.D., Bridier, F., Chartrand, P., and Medraj, M.: Homogeneity range and crystal structure of the Ca2Mg5Zn13 compound. J. Alloys. Compd. 523, 7582 (2012).CrossRefGoogle Scholar
Zhang, Y-N.: Experimental investigation of the Ca–Mg–Zn system via diffusion couples and key experiments (thesis); performed at the Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Canada, 2010.Google Scholar
Stadelmann, P.A.: EMS—A software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145 (1987).CrossRefGoogle Scholar
“JEMS-SAAS V4”, P.A. Stadelmann, 2015, http://www.jems-saas.ch/. Google Scholar
Brubaker, C.O. and Liu, Z-K.: A computational thermodynamic model of the Ca–Mg–Zn system. J. Alloys. Compd. 370, 114122 (2004).CrossRefGoogle Scholar
Mezbahul-Islam, M., Zhang, Y.N., Shekhar, C., and Medraj, M.: Critical assessment and thermodynamic modeling of Mg–Ca–Zn system supported by key experiments. CALPHAD 46, 134147 (2014).CrossRefGoogle Scholar
Wasiur-Rahman, S. and Medraj, M.: Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems. Intermetallics 17, 847864 (2009).CrossRefGoogle Scholar
Thaddeus, H.O., Massalski, B., Subramanian, P.R., and Kacprzak, L.: Binary alloy phase diagrams. In Mg–Zn Phase Diagram, Hugh Baker, ed. (ASM International, Materials Park, Ohio, 1990).Google Scholar
Villars, P., Prince, A., and Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1994).Google Scholar
Zhang, Y-N., Kevorkov, D., Bridier, F., and Medraj, M.: Experimental study of the Ca–Mg–Zn system using diffusion couples and key alloys. Sci. Technol. Adv. Mater. 12, 025003 (2011).CrossRefGoogle ScholarPubMed
Kodentsov, A.A., Bastin, G.F., and van Loo, F.J.J.: The diffusion couple technique in phase diagram determination. J. Alloys. Compd. 320, 207217 (2001).CrossRefGoogle Scholar
Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112122 (2007).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., Barney, E.R., Hannon, A.C., Cheng, Y.Q., and Ma, E.: Local atomic structure of Ca–Mg–Zn metallic glasses. Phys. Rev. B 82, 104206 (2010).CrossRefGoogle Scholar