Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T20:50:09.171Z Has data issue: false hasContentIssue false

Epitaxial thin films of PbTiO3/SnO2 heterostructures on sapphire

Published online by Cambridge University Press:  03 March 2011

H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
H. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Z. Shen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Q. Wang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Get access

Abstract

Epitaxial films of single-layer SnO2 and PbTiO3/SnO2 heterostructures were obtained on (0001) sapphire (α-Al2O3) substrates by metal-organic chemical vapor deposition. X-ray diffraction and transmission electron microscopy were used to characterize the structural properties of these films. The epitaxial relationship for the heterostructure PbTiO3/SnO2/sapphire was found to be (111) [011]PbTiO3 ‖ (100) [001]SnO2 ‖ (0001) [1100]α-Al2O3. The fact that epitaxial ferroelectric films were obtainable in such a structurally highly heterogeneous system suggests that a wide range of material selection is possible in exploring the kind of applications that need to utilize epitaxial ferroelectric films in a multilayered heterostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Swartz, S. L. and Woods, V. E., Condens. Matter News 1, 4 (1992).Google Scholar
2Francombe, M. H. and Krishnaswamy, S. V., J. Vac. Sci. Technol. A8, 1382 (1990).CrossRefGoogle Scholar
3Venkatesan, T., Thin Solid Films 216, 52 (1992).CrossRefGoogle Scholar
4Ramesh, R., Inam, A., Wilkens, B., Chan, W. K., Sands, T., Tarascon, J. M., Fork, D. K., Geballe, T. H., Evans, J., and Bullington, J., Appl. Phys. Lett. 59, 1782 (1991).CrossRefGoogle Scholar
5Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
6Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar
7Cheung, J. T., Morgan, P. E. D., Lowndes, D. H., Zheng, Z-Y., and Breen, J., Appl. Phys. Lett. 62, 2045 (1993).CrossRefGoogle Scholar
8Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
9Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, CM., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).CrossRefGoogle Scholar
10Chopra, K. L., Major, S., and Pandya, D. K., Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
11Chang, H. L. M., Zhang, T. J., Zhang, H., Guo, J., Kim, H. K., and Lam, D. J., J. Mater. Res. 8, 2634 (1993).CrossRefGoogle Scholar
12Guo, J., Chang, H. L. M., and Lam, D. J., Appl. Phys. Lett. 61, 3116 (1992).CrossRefGoogle Scholar
13Bai, G. R., Chang, H. L. M., Foster, C. M., Shen, Z., and Lam, D. J., J. Mater. Res. 9, 156 (1994).CrossRefGoogle Scholar