Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:15:29.142Z Has data issue: false hasContentIssue false

Epitaxial growth of skutterudite (CoSb3) thin films on (001) InSb by pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

J. C. Caylor
Affiliation:
Department of Chemistry, University of California, Berkeley, California 94720
M. S. Sander
Affiliation:
Department of Chemistry, University of California, Berkeley, California 94720
A. M. Stacy
Affiliation:
Department of Chemistry, University of California, Berkeley, California 94720
J. S. Harper
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720
R. Gronsky
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720
T. Sands*
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, California 94720
*
a)Address correspondence to this author.
Get access

Abstract

Heteroepitaxial growth of the cubic skutterudite phase CoSb3 on (001) InSb substrates was achieved by pulsed laser deposition using a substrate temperature of 270 °C and a bulk CoSb3 target with 0.75 at.% excess Sb. An InSb (a0 = 4 0.6478 nm) substrate was chosen for its lattice registry with the antimonide skutterudites (e.g., CoSb3 with a = 0 4 0.9034 nm) on the basis of a presumed 45° rotated relationship with the InSb zinc blende structure. X-ray diffraction and transmission electron microscopy confirmed both the structure of the films and their epitaxial relationship: (001)CoSb3 ∥ (001)InSb; [100]CoSb3 ∥ [110]InSb.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Balandin, A. and Wang, K.. J. Appl. Phys. 84, 6149 (1998).CrossRefGoogle Scholar
2Broido, D.A. and Reinecke, T.L., Appl. Phys. Lett. 70, 2834 (1997).CrossRefGoogle Scholar
3Dresselhaus, M.S., Koga, T., Sun, X., Cronin, S.B., Wang, K.L., and Chen, G., 16th International Conference on Thermoelectrics (IEEE, New York, 1997), p. 12.Google Scholar
4Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T., Ying, J.Y., and Chen, G., Microscale Thermophys. Eng. 3, 89 (1999).CrossRefGoogle Scholar
5Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
6Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
7Reinecke, T.L. and Broido, D.A., 16th International Conference on Thermoelectrics (IEEE, New York, 1997), p. 424.Google Scholar
8Fleurial, J.P., Caillat, T., and Borshchevsky, A., Proc. 13th International Conference on Thermoelectrics (AIP Conference Proceed-ings, College Park, MD, 1995), Vol. 316, p. 40.Google Scholar
9Sales, B.C., Mandrus, D., and Williams, R.K., Science 272, 1325 (1996).CrossRefGoogle Scholar
10Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R., Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
11Sharp, J.W., Jones, E.C., Williams, R.K., Martin, P.M., and Sales, B.C., J. Appl. Phys. 78, 1013 (1995).CrossRefGoogle Scholar
12Slack, G.A. and Tsoukala, V.G., J. Appl. Phys. 76, 1665 (1994).CrossRefGoogle Scholar
13Caillat, T., Borshchevsky, A., and Fleurial, U.P., J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
14Mandrus, D., Migliori, A., Darling, T.W., Hundley, M.F., Peterson, E.J., and Thompson, J.D., Phys. Rev. B 52, 4926 (1995).CrossRefGoogle Scholar
15Anno, H., Sakakibara, T., Notohara, Y., Tashiro, H., Koyanagi, T., Kaneko, H., and Matsubara, K., 16th International Conference on Thermoelectrics (IEEE, New York, 1997), p. 338.Google Scholar
16Chen, B., Xu, J.H., Hu, S., and Uher, C., in Advances in Microscrystalline and Nanocrystalline Semiconductors—1996, edited by Collins, R.W., Fauchet, P.M., Shimuzu, I., Vial, J-C., Shimada, T., and Alivisatos, P.A. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, PA, 1997), p. 1037.Google Scholar
17Christen, H.M., Mandrus, D.G., Norton, D.P., Boatner, L.A., and Sales, B.C., in Thermoelectric Materials—New Directions and Approaches, edited by Tritt, T.M., Kanatzidas, M.G., Lyon, H.B. Jr., and Mahan, G.D. (Mater. Res. Soc. Symp. Proc. 478, Pittsburgh, PA, 1997), p. 217.Google Scholar
18Durand, H.A., Ito, K., and Kataoka, I., in Laser Processing of Materials and Industrial Applications II, edited by Deng, S-S. and Wang, S.C (Proceedings of SPIE 3550, Bellingham, WA, 1998),p. 120.CrossRefGoogle Scholar
19Caylor, J.C., Stacy, A.M., Sands, T., and Gronsky, R., J. Appl. Phys. 89, 3508 (2001).CrossRefGoogle Scholar
20Caylor, J.C., Stacy, A.M., Bandaru, P., Sands, T., and Gronsky, R., in Advances in Laser Ablation of Materials, edited by Singh, R.K., Lowndes, D.H., Chrisey, D.B., Fogarassy, E., and Narayan, J. (Mater. Res. Soc. Symp. Proc. 526, Pittsburgh, PA, 1998), p. 399.Google Scholar
21Caylor, J.C., Stacy, A.M., Sands, T., and Gronsky, R., in Thermoelectric Materials 1998—The Next Generation Materials for Small-scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Lyon, H.B. Jr., Mahan, G., and Kanatzidis, M.G. (Mater. Res. Symp. Proc. 545, Pittsburgh, PA, 1999), p. 327.Google Scholar
22Klem, J.F., Tsao, J.Y., Reno, J.L., Datye, A., and Chadda, S., J. Vac. Sci. Technol., A 9, 2996 (1991).CrossRefGoogle Scholar
23Caylor, J.C., Stacy, A.M., Bloom, B., Gronsky, R., Sands, T., Fuller-Mora, W.W., Ehrlich, A., Song, D., and Chen, G., Proceedings of the 18th International Conference on Thermoelectrics, ICT’99 (IEEE, Piscataway, NJ, 1999), p. 656.Google Scholar
24Song, D.W., Liu, W.L., Zeng, T., Borca-Tasciuc, T., Chen, G., Caylor, C., and Sands, T., Appl. Phys. Lett. 77, 993 (2000).Google Scholar