Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T11:10:58.560Z Has data issue: false hasContentIssue false

Epitaxial growth of aluminum nitride layers on Si(111) at high temperature and for different thicknesses

Published online by Cambridge University Press:  31 January 2011

F. Malengreau
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, 5000 Namur, Belgium
M. Vermeersch
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, 5000 Namur, Belgium
S. Hagège
Affiliation:
Centre d'Etudes de Chimie Métallurgique-CNRS, 15, rue Georges Urbain, F-94407 Vitry Sur Seine Cedex, France
R. Sporken
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, 5000 Namur, Belgium
M. D. Lange
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, 5000 Namur, Belgium
R. Caudano
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, 5000 Namur, Belgium
Get access

Abstract

We present the epitaxial growth by rf reactive sputtering of aluminum nitride on Si(111) at high temperature. The grain size of the obtained films was sufficient to obtain a good low energy electron diffraction (LEED) pattern from which we determined a lattice parameter of 3.1 Å, indicative of fully relaxed films. The surface of the film was examined in situ by Auger electron spectroscopy (AES); no contamination was detected, with the exception of low levels of oxygen. The film and its interface were studied by high resolution electron energy loss spectroscopy (HREELS), x-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). Again, a low concentration of oxygen and no carbon contamination were detected by XPS. Three different growth methods were applied to the deposition of aluminum nitride at high temperature. The obtained films were studied in order to determine the influence of the methods on the interface, on the ‘bulk structure’ of the film, and on its surface. Each has been shown to have particular characteristics. The first one, performed at a temperature of 1000 °C, and including a cleaning of the surface by exposure to Al flux, was characterized by an interfacial layer with no long-range order and increasing the interaction between the film and the substrate. The second growth consisting of deposition at the same high temperature has shown a good surface quality for very thin layers (<50 Å ) and the absence of an interfacial layer. The last method, based on a first step of growth at low temperature (700 °C), resulted in good quality thick layers which allowed us to determine the infrared dielectric constants of aluminum nitride by HREELS.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
2.Schulz, H. and Thiemann, K. H., Solid State Commun. 23, 815 (1977).CrossRefGoogle Scholar
3.Rodriguez-Clemente, R., Aspar, B., Azema, N., Armas, B., Combescure, C., and Figueras, A., J. Cryst. Growth 133, 59 (1993).Google Scholar
4.Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. L., Ettenberg, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
5.Morita, M., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 21, 1102 (1982).Google Scholar
6.Yoshida, S., Misawa, S., and Itoh, A., Appl. Phys. Lett. 26, 461 (1975).Google Scholar
7.Rowland, L. B., Kern, R. S., Tanaka, S., and Davis, R. F., J. Mater. Res. 8, 2310 (1993).Google Scholar
8.Meng, W. J. and Heremans, J., J. Vac. Sci. Technol. 10, 1610 (1992).CrossRefGoogle Scholar
9.Aita, C. R., J. Appl. Phys. 53, 1807 (1982).Google Scholar
10.Shiosaki, T., Yamamoto, T., Oda, T., and Kawabata, A., Appl. Phys. Lett. 36, 643 (1980).Google Scholar
11.Tominaga, K., Imai, H., and Shirai, M., Jpn. J. Appl. Phys. 30, 2574 (1991).CrossRefGoogle Scholar
12.Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991).Google Scholar
13.Moon, D. W., Bernasek, S. L., Dwyer, D. J., and Gland, J. L., J. Am. Chem. Soc. 107, 4363 (1985).Google Scholar
14.Malengreau, F., Vermeersch, M., Sporken, R., Philippe, L., Han, B. Y., and Caudano, R., Surf. Sci. 310, 347 (1994).Google Scholar
15.Vermeersch, M., Malengreau, F., Sporken, R., and Caudano, R., Surf. Sci. 323, 175187 (1995).Google Scholar
16.Wen, H. J., Prietsch, M., Bauer, A., Cuberes, M. T., Manke, I., and Kaindl, G., Appl. Phys. Lett. 66, 3010 (1995).Google Scholar
17.Malengreau, F., Ph.D. Thesis, July 1995.Google Scholar
18.Koch, S. M., Rosner, S. J., Hull, R., Yoffe, G. W., and Harris, J. S., Jr., J. Cryst. Growth 81, 205 (1987).CrossRefGoogle Scholar
19.Lucas, A. A. and Sunjic, M., Phys. Rev. Lett. 26, 229 (1971).CrossRefGoogle Scholar
20.Gassmann, P., Bartolucci, F., and Franchy, R., J. Appl. Phys. 77, 5718 (1995).Google Scholar
21.Carlone, C., Lakin, K. M., and Shanks, H. R., J. Appl. Phys. 55, 4010 (1984).Google Scholar
22.Akasaki, I. and Hashimoto, M., Solid State Commun. 5, 851 (1967).Google Scholar
23.Wang, X. D., Hipps, K. W., and Mazur, U., Langmuir 8, 1347 (1992).Google Scholar
24.Sanjurjo, J. A., Lopez-Cruz, E., Vogl, P., and Cardona, M., Phys. Rev. B 28, 4579 (1983).CrossRefGoogle Scholar
25.Collins, A. T., Lightowlers, E. C., and Dean, P. J., Phys. Rev. 158, 833 (1967).Google Scholar
26.Damen, T. C., Porto, S. P. S., and Tell, B., Phys. Rev. 142, 570 (1966).Google Scholar
27.Xu, Y-N. and Ching, W. Y., Phys. Rev. B 48, 4335 (1993).CrossRefGoogle Scholar
28. Ph. Lambin, Vigneron, J. P., and Lucas, A. A., Comput. Phys. Commun. 60, 351 (1990).Google Scholar
29.Brafman, O., Lengyel, G., Mitra, S. S., Gielisse, J. P., Plendl, J. N., and Mansur, L. C., Solid State Commun. 6, 523 (1968).Google Scholar
30.Ruiz, E., Alvarez, S., and Alemany, P., Phys. Rev. B 49, 7115 (1994).Google Scholar
31.Eriksson, T. S., Ph.D. Thesis, Göteborg, 1985.Google Scholar