Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T01:48:21.871Z Has data issue: false hasContentIssue false

Epitaxial growth and magnetic behavior of NiFe2O4 thin films

Published online by Cambridge University Press:  31 January 2011

S. Venzke
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. B. van Dover*
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
E. M. Gyorgy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. Siegrist
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C-H. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. M. Fleming
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. J. Felder
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
E. Coleman
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. Opila
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
*
b) Author to whom correspondence should be addressed.
Get access

Abstract

Thin films of NiFe2O4 were deposited on SrTiO3 (001) and Y0.15Zr0.85O2 (yttria-stabilized zirconia) (001) and (011) substrates by 90°-off-axis sputtering. Ion channeling, x-ray diffraction, and transmission electron microscopy studies reveal that films grown at 600 °C consist of ∼300 Å diameter grains separated by thin regions of highly defective or amorphous material. The development of this microstructure is attributed to the presence of rotated or displaced crystallographic domains and is comparable to that observed in other materials grown on mismatched substrates (e.g., GaAs/Si or Ba2YCu3O7/MgO). Postdeposition annealing at 1000 °C yields films that are essentially single crystal. The magnetic properties of the films are strongly affected by the structural changes; unannealed films are not magnetically saturated even in an applied field of 55 kOe, while the annealed films have properties comparable to those of bulk, single crystal NiFe2O4. Homoepitaxial films grown at 400 °C also are essentially single crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Williams, C. M., Chrisey, D. B., Lubitz, P., Grabowski, K. S., and Cotell, C. M., J. Appl. Phys. 75, 1676 (1994).CrossRefGoogle Scholar
2.Phillips, J. M., van Dover, R. B., Gyorgy, E. M., and Marshall, J. H., in Mechanisms of Thin Film Evolution, edited by Yalisov, S. M., Thompson, C. V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 87.Google Scholar
3. See, e.g., Zhou, Z-J. and Yan, J. J., J. Magn. Magn. Mater. 115, 87 (1992), and references therein.CrossRefGoogle Scholar
4.van Dover, R. B., Venzke, S., Gyorgy, E. M., Siegrist, T., Phillips, J.M., Marshall, J. H., and Felder, R. J., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 41.Google Scholar
5.Lind, D. M., Berry, S. D., Chern, G., Mathias, H., and Testardi, L. R., J. Appl. Phys. 70, 62018 (1991).CrossRefGoogle Scholar
6.Moeckley, B. H., Lathrop, D. K., Russek, S. E., Buhrman, R. A., Norton, M. G., and Carter, C. B., IEEE Trans. Mag. 27, 1017 (1991).CrossRefGoogle Scholar
7.Phillips, J. M., in Processing and Properties of High Tc Superconductors, Volume 2: Thin Films, edited by S. Jin and D. K. Christen (to be published).Google Scholar
8.Eom, C-B.et al., Appl. Phys. Lett. 55, 595 (1989);CrossRefGoogle Scholar
Eom, C-B.et al., Physica C 171, 351 (1990).CrossRefGoogle Scholar
9. Seattle Specialty Ceramics, Inc., Woodinville, WA 98072.Google Scholar
10. US Gun II, modified for sputtering magnetic materials, US, Inc., Campbell, CA.Google Scholar
11.Cho, H. S., Kim, M. H., and Kim, H. J., J. Mater. Res. 9, 2425 (1994).CrossRefGoogle Scholar
12.Gambino, R. J., J. Appl. Phys. 38, 1129 (1967).CrossRefGoogle Scholar
13.Mee, J. E., Pulliam, G. R., Archer, J. L., and Besser, P. J., IEEE Trans. Mag. 5, 717 (1969).CrossRefGoogle Scholar
14.Marguiles, D. T., Parker, F. T., Spada, F. E., and Berkowitz, A. E., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 53.Google Scholar
15.Chikazumi, S. and Charap, S. H., Physics of Magnetism (Krieger, Malabar, FL, 1978), p. 274 ff.Google Scholar
16.Becker, R. and Döring, W., Ferromagnetismus (Springer, Berlin, 1939), p. 153, quoted in Ref. 14, above.CrossRefGoogle Scholar
17.Néel, L., J. Phys. Radium 9, 184 (1948).CrossRefGoogle Scholar
18.Brown, W. F., Phys. Rev. 60, 139 (1941).CrossRefGoogle Scholar
19.Booth, J. G. and Crangle, J., Proc. Phys. Soc. 79, 1278 (1962).CrossRefGoogle Scholar
20.Berkowitz, A. E., Lahut, J. A., Jacobs, I. S., and Levinson, L. M., Phys. Rev. Lett. 34, 594 (1975).CrossRefGoogle Scholar
21.van Oosterhout, G. W. and Klomp, C. J., Appl. Sci. Res. B9, 288 (1962), quoted in E. P. Wohlfarth, in Magnetism, edited by G. T. Rado and H. Suhl (Academic Press, New York, 1963), p. 377.Google Scholar
22.Harris, J. S. Jr., Koch, S. M., and Rosner, S. J., in Heteroepitaxy on Si II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B. Y., (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 3.Google Scholar
23.Shaw, D. W., in Heteroepitaxy on Si II, edited by Fan, J. C. C., Phillips, J. M. and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 15.Google Scholar