Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T09:25:03.721Z Has data issue: false hasContentIssue false

Epitaxial films of Li12xNb1–xWxO3 prepared by chemical solution deposition

Published online by Cambridge University Press:  31 January 2011

Charles D. E. Lakeman
Affiliation:
Department of Materials, University of California, Santa Barbara, California 93106
Yin Xia
Affiliation:
Department of Chemistry, University of California, Santa Barbara, California 93106
Jin-Hyeok Kim
Affiliation:
Department of Materials, University of California, Santa Barbara, California 93106
Xuehua Wu
Affiliation:
Department of Materials, University of California, Santa Barbara, California 93106
Hellmut G. Eckert
Affiliation:
Department of Chemistry, University of California, Santa Barbara, California 93106
Fred F. Lange
Affiliation:
Department of Materials, University of California, Santa Barbara, California 93106
Get access

Abstract

The growth of epitaxial thin films of Li1–xNb1–xWxO3 from solution precursors on single-crystal LiNbO3 substrates is reported. An all-alkoxide solution readily gave single phase powders after simply mixing the constituent components, whereas an acetate-alkoxide system required additional solution processing stages to give phase pure powders. Heat treatment of films on single-crystal, basal plane LiNbO3 substrates at 600 °C formed a nanocrystalline, porous film which was converted to an epitaxial film after heating to 800 °C. Measurements of second harmonic generation in powders indicate an increase in SHG efficiency with increasing tungsten content. Optical absorption data for films were calculated using reflectance and transmittance spectroscopy data, and indicate a decrease in bandgap with increasing tungsten.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schmidt, R. V. and Kaminov, I. P., Appl. Phys. Lett. 25, 458 (1974).Google Scholar
2.Becker, R. A., Mater. Res. Soc. Bull. XIII, 21 (1988).Google Scholar
3.McCoy, M. A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, 2040 (1994).CrossRefGoogle Scholar
4.Zhu, Y., Zhu, S., Hong, J., and Ming, N., Appl. Phys. Lett. 65, 558 (1994).CrossRefGoogle Scholar
5.Webjörn, J., J. Lightwave Tech. 11, 589 (1993).Google Scholar
6.Larell, F., Webjörn, J., Arvidsson, G., and Holmberg, J., J. Lightwave Tech. 10, 1606 (1992).CrossRefGoogle Scholar
7.Wiegel, M., Emond, M. H. J., de Bruin, T. H. M., and Blasse, G., Chem. Mater. 6, 973 (1994).Google Scholar
8.Bergman, J. G. and Crane, C. R., J. Solid State Chem. 12, 172 (1975).CrossRefGoogle Scholar
9.Yanovskaya, M. I., Turevskaya, E. P., Turova, N.Ya., Sevost'yanov, M. A., Novoselova, A. V., and Venevtsev, Yu.N., Inorg. Mater. 21, 1226 (1985).Google Scholar
10.Yanovskaya, M. I., Turevskaya, E. P., Leonov, A. P., Ivanov, S. A., Kolganova, N. V., Stefanovich, S.Yu., Turova, N.Ya., and Venevtsev, Yu.N., J. Mater. Sci. 23, 395 (1988).Google Scholar
11.Eichorst, D. J. and Payne, D. A., Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 773.Google Scholar
12.Eichorst, D. J., Payne, D. A., R.Wilson, S., and Howard, K. E., Inorg. Chem. 29, 1458 (1990).CrossRefGoogle Scholar
13.Partlow, D. P. and Greggi, J., J. Mater. Res. 2, 595 (1987).CrossRefGoogle Scholar
14.Hirano, S. I. and Kato, K., Adv. Ceram. Mater. 3, 503 (1988).CrossRefGoogle Scholar
15.Hirano, S. I. and Kato, K., J. Non-Cryst. Solids 100, 538 (1988).Google Scholar
16.Hagberg, D. S., M. S. Thesis, University of Illinois at Urbana-Champaign (1991).Google Scholar
17.Derouin, T. A., Lakeman, C. D. E., Wu, X-H., Speck, J. S., and Lange, F. F., J. Mater. Res. 12, 1391 (1997).CrossRefGoogle Scholar
18.Fork, D. K., Armani-Leplingard, F., Kingston, J. J., and Anderson, G. B., Thin Films for Integrated Optics Applications, edited by Wessels, B. W., Marder, S. R., and Walba, D. M. (Mater. Res. Soc. Symp. Proc. 392, Pittsburgh, PA, 1995), p. 189.Google Scholar
19.Hirano, S-I., private discussion (1994).Google Scholar
20.Srikant, V., Ph.D. Dissertation, University of California, Santa Barbara, CA (1995).Google Scholar
21.Xia, Y., Ph.D. Dissertation, University of California, Santa Barbara, CA (1997); Y. Xia, N. Machida, X-H. Wu, C.D. E. Lakeman, L. van Wüllen, F. F. Lange, C. G. Levi, H. Eckert, and S. Anderson, J. Phys. Chem. B, 101, 9180 (1997).Google Scholar
22.Nenoff, T. M., Harrison, W. T. A., Gier, T. E., Keder, N. L., Zaremba, C. M., Srdanov, V. I., Nicol, J. M., and Stucky, G. D., Inorg. Chem. 33, 2472 (1994).Google Scholar
23.Polli, A. D., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 78, 3401 (1995).Google Scholar
24.Polli, A. D., Lange, F. F., and Levi, C. G., unpublished.Google Scholar
25.McCoy, M. A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, 2029 (1994).Google Scholar
26.Malovichko, G. I., Grachev, V. G., Kokanyan, E. P., Schirmer, O. F., Betzler, K., Gather, B., Jermann, F., Klauer, S., Schlarb, U., and Wöhlecke, M., Appl. Phys. A. 56, 103 (1993).Google Scholar
27.Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
28.Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
29.Blasse, G. and de Pauw, A. D. M., J. Inorg. Nucl. Chem. 32, 3960 (1970).CrossRefGoogle Scholar
30.Gallagher, P. K. and O'Bryan, H. M., J. Am. Ceram. Soc. 71, C56 (1988).Google Scholar
31.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 74, 946 (1992).CrossRefGoogle Scholar
32.Fourquet, J. L., Bail, A. Le, and Gillet, P. A., Mater. Res. Bull. 23, 1163 (1988).CrossRefGoogle Scholar
33.Jiangou, Zhu, Shipin, Zhao, Dingquan, Xiao, Xiu, Wang, and Guanfeng, Xu, J. Phys.: Condens. Matter 4, 2977 (1992).Google Scholar
34.Kam, Kam-shing, Henkel, J. H., and Hwang, Hsing-chow, J. Chem. Phys. 69, 1949 (1978).Google Scholar
35.Pankove, J. I., Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1975).Google Scholar