Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T13:49:02.674Z Has data issue: false hasContentIssue false

Enzymatic processing of amelogenin during continuous crystallization of apatite

Published online by Cambridge University Press:  31 January 2011

V. Uskoković*
Affiliation:
Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California–San Francisco, San Francisco, California 94143
M-K. Kim
Affiliation:
Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California–San Francisco, San Francisco, California 94143; and Department of Molecular and Cell Biology, University of California–Berkeley, Berkeley, California 94720-3200
W. Li
Affiliation:
Department of Oral and Craniofacial Sciences, University of California–San Francisco, San Francisco, California 94143
S. Habelitz
Affiliation:
Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California–San Francisco, San Francisco, California 94143
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Dental enamel forms through a protein-controlled mineralization and enzymatic degradation process with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant full-length human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were used in a pH-stat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/mL rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved interaction between rH174 and its proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating a possible role in protein self-assembly. This study suggests that mimicking enamel formation in vitro requires the synergy between the aspects of matrix self-assembly, proteolysis, and crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garant, P.R.: Oral Cells and Tissues Quintessence Carol Stream, IL 2003Google Scholar
2Bartlett, J.D., Ryu, O.H., Xue, J., Simmer, J.P., Margolis, H.C.: Enamelysin mRNA displays a developmentally defined pattern of expression and encodes a protein which degrades amelogenin. Connect. Tissue Res. 39, 405 1998Google Scholar
3Moradian-Oldak, J., Du, C., Falini, G.: On the formation of amelogenin microribbons. Eur. J. Oral Sci. 114, (Suppl. 1)289 2006CrossRefGoogle ScholarPubMed
4Du, C., Falini, G., Fermani, S., Abbott, C., Moradian-Oldak, J.: Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307, 1450 2005Google Scholar
5Wiedemann-Bidlack, F.B., Beniash, E., Yamakoshi, Y., Simmer, J.P., Margolis, H.C.: pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro. J. Struct. Biol. 160, 57 2007Google Scholar
6Bartlett, J.D., Simmer, J.P.: Proteinases in developing enamel. Crit. Rev. Oral Biol. Med. 10(4), 425 1999Google Scholar
7Bartlett, J.D., Skobe, Z., Lee, D.H., Wright, J.T., Li, Y., Kulkarni, A.B., Gibson, C.W.: A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Eur. J. Oral Sci. 114, (Suppl. 1)18 2006CrossRefGoogle ScholarPubMed
8Caterina, J.J., Skobe, Z., Shi, J., Dang, Y., Simmer, J.P., Birkedal-Hansen, H., Bartlett, J.D.: Enamelysin (MMP-20) deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 277(51), 49598 2002Google Scholar
9Li, W., Gao, C., Yan, Y., DenBesten, P.K.: X-linked amelogenesis imperfecta may result from decreased formation of tyrosine rich amelogenin peptide (TRAP). Arch. Oral Biol. 48, 177 2003CrossRefGoogle ScholarPubMed
10Tomson, M.B., Nancollas, G.H.: Mineralization kinetics: A constant composition approach. Science 200, 1059 1978CrossRefGoogle ScholarPubMed
11Habelitz, S., DenBesten, P.K., Marshall, S.J., Marshall, G.W., Li, W.: Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation. Orthod. Craniofac. Res. 8, 232 2005CrossRefGoogle Scholar
12McDowell, H., Gregory, T.M., Brown, W.E.: Solubility of Ca5(PO4) 3OH in the system Ca(OH)2–H3PO4–H2O at 5, 15, 25 and 37.5 °C. J. Res. Natl. Bur. Stand. 81A, 273 1977Google Scholar
13Larsen, M.J.: Ion Products and Solubility of Calcium Phosphates Royal Dental College Denmark 2001Google Scholar
14Koutsoukas, P., Amjad, Z., Tomson, M.B., Nancollas, G.H.: Crystallization of calcium phosphates. A constant composition study. J. Am. Chem. Soc. 102, 1553 1980CrossRefGoogle Scholar
15Featherstone, J.D., Mayer, I., Driessens, F.C., Verbeeck, R.M., Heijligers, H.J.: Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral. Calcif. Tissue Int. 35, 169 1983CrossRefGoogle ScholarPubMed
16Moradian-Oldak, J.: Amelogenins: Assembly, processing and control of crystal morphology. Matrix Biol. 20, 293 2001CrossRefGoogle ScholarPubMed
17Beniash, E., Simmer, J.P., Margolis, H.C.: The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. J. Struct. Biol. 149(2), 182 2005Google Scholar
18Hoche, T., Moisescu, C., Avramov, I., Russel, C., Heerdegen, W.D., Jager, C.: Microstructure of SiO2–Al2O3–CaO–P2O5–Na2O– K2O–F glass ceramics. 2. Time dependence of apatite crystal growth. Chem. Mater. 13, 1320 2001Google Scholar
19Bochicchio, B., Tamburro, A.M.: Polyproline II structure in proteins: Identification by chiroptical spectroscopies, stability, and functions. Chirality 14, 782 2002CrossRefGoogle ScholarPubMed
20Rath, A., Davidson, A.R., Deber, C.M.: The structure of “unstructured” regions in peptides and proteins: Role of the polyproline II helix in protein folding and recognition. Biopolymers 80, 179 2005Google Scholar
21Le, T.Q., Gochin, M., Featherstone, J.D.B., Li, W., DenBesten, P.K.: Comparative calcium binding of leucine-rich amelogenin peptide and full-length amelogenin. Eur. J. Oral Sci. 114, (Suppl. 1)320 2006CrossRefGoogle ScholarPubMed
22Hunter, G.K., Curtis, H.A., Grynpas, M.D., Simmer, J.P., Fincham, A.G.: Effects of recombinant amelogenin on hydroxyapatite formation in vitro. Calcif. Tissue Int. 65, 226 1999Google Scholar
23Wang, L., Guan, X., Yin, H., Moradian-Oldak, J., Nancollas, G.H.: Mimicking the self-organized microstructure of tooth enamel. J. Phys. Chem. C 112(15), 5892 2008Google Scholar
24Wang, L., Guan, X., Du, C., Moradian-Oldak, J., Nancollas, G.H.: Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J. Phys. Chem. C 111(17), 6398 2007CrossRefGoogle Scholar
25Tarasevich, B.J., Howard, C.J., Larson, J.L., Snead, M.L., Simmer, J.P., Paine, M., Shaw, W.J.: The nucleation and growth of calcium phosphate by amelogenin. J. Cryst. Growth 304(2), 407 2007Google Scholar
26Uskoković, V.: Isn’t self-assembly a misnomer? Multi-disciplinary arguments in favor of Co-assembly. Adv. Colloid Interface Sci. 141(1–2), 37 2008Google Scholar
27Cölfen, H., Mann, S.: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. Engl. 42, 2350 2003Google Scholar
28Fearnhead, R.W.: The electron microscopy of amelogenesis in the rat. J. Dent. Res. 39, 1104 1960Google Scholar
29Eastoe, J.E.: The amino acid composition of proteins from the oral tissues. Arch. Oral Biol. 52, 633 1963CrossRefGoogle Scholar
30Margolis, H.C., Beniash, E., Fowler, C.E.: Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res. 85(9), 775 2006Google Scholar
31Tourbez, M., Firanescu, C., Yang, A., Unipan, L., Duchambon, P., Blouquit, Y., Craesu, C.T.: Calcium-dependent self-assembly of human centrin 2. J. Biol. Chem. 279(46), 47672 2004Google Scholar
32Habelitz, S., Kullar, A., Marshall, S.J., DenBesten, P.K., Balooch, M., Marshall, G.W., Li, W.: Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J. Dent. Res. 83(9), 698 2004Google Scholar