Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:26:44.963Z Has data issue: false hasContentIssue false

Entrapment of organosilicon molecules in nonhydrolytic alumina gels and thermal behavior of the resulting composite

Published online by Cambridge University Press:  31 January 2011

G. S. Grader
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
S. A. Melchior
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Y. De-Hazan
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
S. Melamed
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
G. E. Shter
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Get access

Abstract

This work describes the entrapment of tetrakis(trimethylsilyl)silane (TK) and tetrakis(chlorodimethylsilyl)silane (TKCl) in nonhydrolytic alumina gels, and the materials' thermal behavior. During gelation and drying TK and TKCl are physically entrapped in the gel up to a limit of Si/Al = 0.33. Above this limit, sublimation and decomposition of TK and TKCl occur during heating. A larger fraction of TKCl decomposition products is retained due to their higher reactivity. Below and above Si/Al = 0.33, the gel converts to mullite + α−Al2O3or mullite + amorphous silica, respectively. Conversion to hexagonal mullite indicates atomic scale homogeneity of Si and Al during firing.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a)Avnir, D., Acc. Chem. Res. 28, 328 (1995);CrossRefGoogle Scholar
(b)Rottman, C., Grader, G.S., De Hazan, Y., and Avnir, D., Langmuir 12, 5505 (1996);CrossRefGoogle Scholar
(c)Rottman, C., Grader, G., De Hazan, Y., Melchior, S., and Avnir, D., J. Am. Chem. S °C. 121, 8533 (1999).CrossRefGoogle Scholar
2.Acosta, S., Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C.J., and Mecartney, M.L. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 4354.Google Scholar
3.Acosta, S., Corriu, R.J.P., Leclerq, D., Lefèvre, P., Mutin, P.H., and Vioux, A., J. Non-Cryst. Solids, 170 (3), 234242 (1994).CrossRefGoogle Scholar
4.Grader, G.S., De Hazan, Y., Cohen, Y., and Bravo-Zhivotovskii, D., J. Sol-Gel. Sci. Technol. 10, 5 (1997).CrossRefGoogle Scholar
5.De Hazan, Y., Shter, G.E., Cohen, Y., Rottman, C., Avnir, D., and Grader, G.S., J. Sol-Gel Sci. Technol. 14, 233 (1999).CrossRefGoogle Scholar
6.Grader, G.S. (unpublished).Google Scholar
7.Corriu, R.J.P. and Leclercq, D., Angew. Chem., Int. Ed. Engl. 35, 1421 (1996), and references therein.CrossRefGoogle Scholar
8.Acosta, S., Corriu, R.J.P., Leclercq, D., Mutin, P.H., and Vioux, A., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C.J., and Mecartney, M.L. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 345350.Google Scholar
9.Vioux, A. and Leclercq, D., Heterog. Chem. Rev. 3, 65 (1996).3.0.CO;2-7>CrossRefGoogle Scholar
10.Vioux, A., Chem. Mater. 9, 2292 (1997).CrossRefGoogle Scholar
11.Hay, J.N. and Raval, H.M., J. Mater. Chem., 8, 1233 (1998).CrossRefGoogle Scholar
12.Gilman, H. and Smith, C.L., J. Organomet. Chem. 8, 245 (1967).CrossRefGoogle Scholar
13.Sakurai, H., Watanabe, T., and Kumada, M., J. Organomet. Chem. 9, P11 (1967).CrossRefGoogle Scholar
14.Grader, G.S., De Hazan, Y., Bravo-Zhivotovskii, D., and Shter, G.E., J. Sol-Gel Sci. Technol. 10, 127 (1997).CrossRefGoogle Scholar
15.Al-Juaid, S.S., Derouiche, Y., Hitchcock, P.B., and Lickiss, P.D., J. Organomet. Chem. 341, 241 (1988).CrossRefGoogle Scholar
16.Ossaka, J., Nature, 191, 10001001 (1961).CrossRefGoogle Scholar
17.Jansen, M. and Guenther, E., Chem. Mater. 7, 2110 (1995).CrossRefGoogle Scholar