Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:00:35.508Z Has data issue: false hasContentIssue false

Enhancement on afterglow properties of Eu3+ by Ti4+, Mg2+ incorporation in CaWO4 matrix

Published online by Cambridge University Press:  07 February 2012

Haoyi Wu
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong Province, People’s Republic of China
Yihua Hu*
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong Province, People’s Republic of China
Fengwen Kang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong Province, People’s Republic of China
Nana Li
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, Guangdong Province, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The long afterglow phosphor, CaWO4: Eu3+, is synthesized and the intensity and duration of its afterglow can be enhanced by the Ti4+ and Mg2+ incorporation. The x-ray diffraction patterns depict pure tetragonal CaWO4 of all samples. The emission spectra show the Eu3+ emission and the charge transfer (CT) emission of WO42−. The intensity of CT increases with the Mg2+ incorporation. The excitation spectra monitoring 616 nm exhibit the strongest CT band with Ti4+ incorporation. These results indicate that Mg2+ enhances the efficiency of CT emission of WO42− while the Ti4+ enhances the energy transfer rate from CT to Eu3+. Since the thermoluminescence (TL) curves do not imply a new trap, the enhancement of the afterglow results from the coreinforcement of CT efficiency and energy transfer rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jüstel, T., Nikol, H., and Ronda, C.: New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 37, 3084 (1998).3.0.CO;2-W>CrossRefGoogle ScholarPubMed
2.Höppe, H.A.: Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572 (2009).CrossRefGoogle ScholarPubMed
3.Lei, B., Sha, L., Zhang, H., Liu, Y., Man, S-q., and Yue, S.: Preparation and luminescence properties of green-light-emitting afterglow phosphor Ca8Mg(SiO4)4Cl2:Eu2+. Solid State Sci. 12, 2177 (2010).CrossRefGoogle Scholar
4.Ju, Z., Wei, R., Zheng, J., Gao, X., Zhang, S., and Liu, W.: Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4. Appl. Phys. Lett. 98, 121906 (2011).CrossRefGoogle Scholar
5.de Chermont, Q. le M., Chanéac, C., Seguin, J., Pellé, F., Maîtrejean, S., Jolivet, J-P., Gourier, D., Bessodes, M., and Scherman, D.: Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104, 9266 (2007).CrossRefGoogle Scholar
6.Wu, B-Y., Wang, H-F., Chen, J-T., and Yan, X-P.: Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686 (2011).CrossRefGoogle ScholarPubMed
7.Xiao, X. and Xiao, X.: Long afterglow silicate luminescent material and its manufacturing method. U.S. Patent 6,093,346 (2000).Google Scholar
8.Lin, Y., Tang, Z., Zhang, Z., Wang, X., and Zhang, J.: Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505 (2001).CrossRefGoogle Scholar
9.Murayama, Y., Takeuchi, N., Aoki, Y., and Matsuzawa, T.: Phosphorescent phosphor. U.S. Patent 5,424,006 (1995).Google Scholar
10.Matsuzawa, T., Aoki, Y., Takeuchi, N., and Murayama, Y.: A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996).CrossRefGoogle Scholar
11.Li, W., Liu, Y., and Ai, P.: Synthesis and luminescence properties of red long-lasting phosphor Y2O2S: Eu3+, Mg2+, Ti4+ nanoparticles. Mater. Chem. Phys. 119, 52 (2010).CrossRefGoogle Scholar
12.Ai, P.F., Liu, Y.L., Li, W.Y., and Xiao, L.Y.: Synthesis and luminescent characterization of Y2O2S: Eu3+, Mg2+, Ti4+ nanotubes. Physica B 405, 3360 (2010).CrossRefGoogle Scholar
13.Miyamoto, Y., Kato, H., Honna, Y., Yamamoto, H., and Ohmi, K.: An orange-emitting, long-persistent phosphor, Ca2Si5N8: Eu2+, Tm3+. J. Electrochem. Soc. 156, J235 (2009).CrossRefGoogle Scholar
14.Lei, B., Machida, K., Horikawa, T., Hanzawa, H., Kijima, N., Shimomura, Y., and Yamamoto, H.: Reddish-orange long-lasting phosphorescence of Ca2Si5N8: Eu2+, Tm3+ phosphor. J. Electrochem. Soc. 157, J196 (2010).CrossRefGoogle Scholar
15.Xu, X., Wang, Y., Zeng, W., and Gong, Y.: Luminescence and storage properties of Sm-doped alkaline-earth atannates. J. Electrochem. Soc. 158, J305 (2010).CrossRefGoogle Scholar
16.Liu, Z-W., Liu, Y.L., Yuan, D-S., Zhang, J-X., Rong, J-H., and Huang, L-H.: Long-lasting phosphorescence in Eu3+-doped CaWO4. Chin. J. Inorg. Chem. 20, 1433 (2004) (in Chinese).Google Scholar
17.Hong, Z., Zhang, P., Fan, X., and Wang, M.: Eu3+ red long afterglow in Y2O2S: Ti, Eu phosphor through afterglow energy transfer. J. Lumin. 124, 127 (2007).CrossRefGoogle Scholar
18.Murazaki, Y., Arak, K., and Ichinomiya, K.: A new long persistence red phosphors. Rare Earth Jpn. 35, 41 (1999).Google Scholar
19.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
20.Patterson, A.L.: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
21.Pang, M.L., Lin, J., Wang, S.B., Yu, M., Zhou, Y.H., and Han, X.M.: Luminescent properties of rare-earth-doped CaWO4 phosphor films prepared by the Pechini sol–gel process. J. Phys. Condens. Matter. 15, 5157 (2003).CrossRefGoogle Scholar
22.Lin, G., Dong, G., Tan, D., Liu, X., Zhang, Q., Chen, D., Qiu, J., Zhao, Q., and Xu, Z.: Long lasting phosphorescence in oxygen-deficient zinc–boron-germanosilicate glass–ceramics. J. Alloys Compd. 504, 177 (2010).CrossRefGoogle Scholar
23.Dorenbos, P., Krumpel, A.H., van der Kolk, E., Boutinaud, P., Bettinelli, M., and Cavalli, E.: Lanthanide level location in transition metal complex compounds. Opt. Mater. 32, 1681 (2010).CrossRefGoogle Scholar
24.Xiao, L., Xiao, Q., Liu, Y., Ai, P., Li, Y., and Wang, H.: A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic. J. Alloys Compd. 495, 72 (2010).CrossRefGoogle Scholar
25.Gürmen, E., Daniels, E., and King, J.S.: Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys. 55, 1093 (1971).CrossRefGoogle Scholar
26.Shi, S., Liu, X., Gao, J., and Zhou, J.: Spectroscopic properties and intense red-light emission of (Ca, Eu, M)WO4 (M = Mg, Zn, Li). Spectrochim. Acta, Part A 69, 396 (2008).CrossRefGoogle Scholar
27.Zhang, Y., Holzwarth, N.A.W., and Williams, R.T.: Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Phys. Rev. B 57, 12738 (1998).CrossRefGoogle Scholar
28.Yen, W.M., Shionoya, S., and Yamamoto, H.: Phosphors Handbook, 2nd ed. (CRC Press, Boca Raton, 2006), p. 454.CrossRefGoogle Scholar
29.Clabau, F., Rocquefelte, X., Le Mercier, T., Deniard, P., Jobis, S., and Whangbo, M-H.: Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem. Mater. 18, 3212 (2006).CrossRefGoogle Scholar