Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T15:12:43.284Z Has data issue: false hasContentIssue false

Enhancement in redox and electrocatalytic activity observed on Si ion-implanted Ni

Published online by Cambridge University Press:  03 March 2011

M.T. Pham
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
M.F. Maitz
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
E. Richter
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
H. Reuther
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
A. Muecklich
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
F. Prokert
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01314 Dresden, Germany
Get access

Abstract

Ni was surface-alloyed with Si by ion implantation. The material was examined for its redox and electrocatalytic behavior in NaOH by cyclic voltammetry. The surface was characterized by x-ray photoelectron spectroscopy, x-ray and electron diffraction, and electron and atomic force microscopy. The ion implantation enhanced activity toward the redox conversion of Ni(OH)2 ↔ NiOOH and the anodic oxidation of glucose reached about 3.5 times and about 2.8 times, respectively. The material is an amorphous mixed oxide of Ni and Si. The effect is discussed considering the true surface area and the generation of active surface sites in relation to the oxygen evolution.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McBreen, J. in Modern Aspects of Electrochemistry, edited by White, R., Bockris, J., and Conway, B. (Plenum Press, New York, 1990), 21 p. 2.Google Scholar
2Carone, J.A. in Handbook of Batteries, edited by Linden, D. (McGraw-Hill, Toronto, 1994), p. 28.Google Scholar
3Nikolov, I., Darkaoui, R., Zhecheva, E.E., Stoyanova, R., Dimitrov, N. and Vitanov, T.: J. Electroanal. Chem. 429 157 (1997).CrossRefGoogle Scholar
4Schumacher, L.C., Holzhueter, I.B., Hill, I.R. and Dignam, M.J.: Electrochim. Acta 35 975 (1990).CrossRefGoogle Scholar
5Trasatti, S.: Electrochim. Acta 36 225 (1991).CrossRefGoogle Scholar
6de Chialvo, M.R.G. and Chialvo, A.C.: Electrochim. Acta 38 2247 (1993).CrossRefGoogle Scholar
7Chen, J., Bradhurst, D.H., Dou, S.X. and Liu, H.K.: J. Electrochem. Soc. 146 3606 (1999).CrossRefGoogle Scholar
8Maruyama, T. and Arai, S.: J. Electrochem. Soc. 143 1383 (1996).CrossRefGoogle Scholar
9Luo, P.F. and Kuwana, T.: Anal. Chem. 66 2775 (1994).CrossRefGoogle Scholar
10Titz, A. and Buchberger, W.: Fresenius J. Anal. Chem. 339 57 (1991).Google Scholar
11Marioli, J.M., Luo, P.F. and Kuwana, T.: Anal. Chim. Acta 282 571 (1993).CrossRefGoogle Scholar
12Casella, G. and Gatta, M.: J. Electrochem. Soc. 149 B465 (2002).CrossRefGoogle Scholar
13Goto, M., Miyahara, H. and Ishii, D.: J. Chromatography 515 213 (1990).CrossRefGoogle Scholar
14Casella, I.G., Gatta, M. and Castaldi, T.R.I.: J. Chromatography A 878 57 (2000).CrossRefGoogle Scholar
15Fleischmann, M., Korinek, K. and Pletcher, D.: Electroanal. Chem.. 31 39 (1971).CrossRefGoogle Scholar
16Fleischman, M., Korinek, K. and Pletcher, D.: J. Chem. Soc., Perkin Trans. 2 1396 (1972).CrossRefGoogle Scholar
17Yeo, I.H. and Johnson, D.C.: J. Electroanal. Chem. 495 110 (2001).CrossRefGoogle Scholar
18Bode, H., Dehmelt, K. and Witte, J.: Electrochim. Acta 11 1079 (1966).CrossRefGoogle Scholar
19Guzman, R.S. Schrebler, Vilche, J.R. and Arvia, A.J.: J. Electrochem. Soc. 125 1578 (1978).CrossRefGoogle Scholar
20Hahn, F., Beden, B., Croissant, M.J. and Lamy, C.: Electrochim. Acta 31 335 (1986).CrossRefGoogle Scholar
21Weninger, J.L. and Breiter, M.W.: J. Electrochem. Soc. 110 484 (1963).CrossRefGoogle Scholar
22Corrigan, D.A. and Bendert, R.M.: J. Electrochem. Soc. 136 723 (1989).CrossRefGoogle Scholar
23El Wakkard, S.E.S. and Amara, E.S.: J. Chem. Soc. 4 3504 (1953).CrossRefGoogle Scholar
24Guay, D., Tourillon, G., Dartyge, E., Fontaine, A., McBreen, J., Pandya, K.I. and O’Grady, W.E.: J. Electroanal. Chem. 305 83 (1991).CrossRefGoogle Scholar
25Barnard, R., Crickmore, G.T., Lee, J.A. and Tye, F.L.: J. Appl. Electrochem. 10 61 (1980).CrossRefGoogle Scholar
26Arfelli, M., Ingo, G.M., Mattogno, G. and Beccarla, A.M.: Surf. Interface Anal. 16 299 (1990).CrossRefGoogle Scholar
27Fontaine, R., Feve, L., Buvat, J.P., Schoeller, C. and Caillat, R.: J. Microsc. Spectrosc. Electron. 14 453 (1989).Google Scholar
28Marcus, P. and Olefjord, I.: Surf. Interface Anal. 4 29 (1982).CrossRefGoogle Scholar
29Luo, P.F., Kuwana, T., Paul, D.K. and Sherwood, P.M.A.: Anal. Chem. 68 3330 (1996).CrossRefGoogle Scholar
30Wagner, C.D. in Practical Surface Analysis, edited by Briggs, D. and Seah, M.P. (John Wiley & Sons, New York, 1990), Vol. 1, p. 595634.Google Scholar
31Ansell, R.O., Dickinson, T., Povery, A.F. and Sherwood, P.M.A.: J. Electroanal. Chem. 10 69 (1979).CrossRefGoogle Scholar
32Moroney, L.M., Smart, P.S.C. and Roberts, M.W.: J. Chem. Soc., Farady Trans. 79 1769 (1983).CrossRefGoogle Scholar
33Lian, K., Thorpe, S.J. and Kirk, D.W.: Electrochim. Acta 37 2029 (1992).CrossRefGoogle Scholar
34Enyo, M., Yamazaki, T. and Suzuki, K.: Electrochem. Acta 28 1573 (1983).CrossRefGoogle Scholar
35Kupka, J. and Budniok, A.: J. Appl. Electrochem. 20 1015 (1990).CrossRefGoogle Scholar
36Machida, K., Enyo, M., Toyoshima, I., Miyahara, K., Kai, K. and Suzuki, K.: Bull. Chem. Soc. Japan 56 3393 (1983).CrossRefGoogle Scholar
37Huot, J.Y., Trudeau, M., Brossard, L. and Schulz, R.: J. Hydrogen Energy 14 319 (1989).CrossRefGoogle Scholar
38Lian, K., Kirk, D.W. and Thorpe, S.J.: Electrochem. Acta 36 537 (1991).CrossRefGoogle Scholar
39Hoar, J.P.The Electrochemistry of Oxygen (Interscience, New York, 1968), p. 277.Google Scholar
40Conway, B.E. and Bourgault, P.L.: Can. J. Chem. 40 1690 (1960).CrossRefGoogle Scholar
41Lu, P.W.T. and Srinivasan, S.: J. Electrochem. Soc. 125 1416 (1978).CrossRefGoogle Scholar
42Burke, L.D., Lyons, M.E. and Murphy, O.J.: J. Electroanal. Chem. 132 247 (1982).CrossRefGoogle Scholar
43Mo, Y., Hwang, E. and Scherson, D.A.: J. Electrochem. Soc. 143 37 (1996).CrossRefGoogle Scholar
44Etchenique, R. and Calvo, E.J.: J. Electrochem. Soc. 148 A361 (2001).CrossRefGoogle Scholar
45Chen, R.R., Mo, Y. and Scherson, D.A.: Langmuir 11 3933 (1994).CrossRefGoogle Scholar