Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:53:52.009Z Has data issue: false hasContentIssue false

Enhanced photovoltaic conversion efficiency of a dye-sensitized solar cell based on TiO2 nanoparticle/nanorod array composites

Published online by Cambridge University Press:  22 January 2019

Chengtao Yu*
Affiliation:
School of Mechanical Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
Jingyi Zhang
Affiliation:
School of Mechanical Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
Hexu Yang
Affiliation:
School of Mechanical Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
Ling Zhang
Affiliation:
School of Mechanical Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
Yu Gao
Affiliation:
School of Mechanical Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hierarchical nanostructure of TiO2 nanoparticles/nanorod arrays (TiO2 NPs/NRs) is synthesized and applied in dye-sensitized solar cells (DSSCs) comparing with the TiO2 nanorod (TiO2 NR) arrays and the TiO2 nanoparticles (TiO2 NPs). The TiO2 NP/NR surface morphology is revealed by X-ray diffraction, field emission scanning, and transmission electron microscopy. The power conversion efficiency of NP/NR-based DSSCs (length 3 μm) is improved to 3.47%, which is 2.2 times higher than the NR-based DSSCs (length 3 μm), and rivals the NP-based DSSC (length 5 μm). The high photovoltaic performance was attributed to that the TiO2 NP/NR photoanode has large surface area and exhibits excellent light scattering, allowing for fast interfacial charge transfer and less charge recombination, which are characterized using the UV-vis absorbance spectra, Brunauer–Emmett–Teller (BET) surface area, electrochemical impedance spectroscopy (EIS) measurements, and photoluminescence (PL) spectroscopy. However, further work is needed to overcome the limitations of TiO2 NP/NR and improve the performance of TiO2 NP/NR-based DSSC.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Qi, K., Cheng, B., Yu, J., and Ho, W.: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).CrossRefGoogle Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).CrossRefGoogle Scholar
Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y., Zhang, S., and Li, X.: Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 358, 425 (2015).CrossRefGoogle Scholar
Wu, F., Li, X., Liu, W., and Zhang, S.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).CrossRefGoogle Scholar
D’Souza, L.P., Muralikrishna, S., Chandan, H.R., Ramakrishnappa, T., and Balakrishna, R.G.: Neodymium doped titania as photoanode and graphene oxide-CuS composite as counter electrode material in quantum dot solar cell. J. Mater. Res. 30, 328 (2015).Google Scholar
Lee, M.V., Raga, S.R., Yuichi, K., Leyden, M.R., Ono, L.K., Wang, S., and Qi, Y.: Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. J. Mater. Res. 32, 45 (2017).CrossRefGoogle Scholar
Liu, Y., Tian, L., Tan, X., Li, X., and Chen, X.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).CrossRefGoogle Scholar
Yan, X., Tian, L., and Chen, X.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).Google Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).CrossRefGoogle ScholarPubMed
Xu, J., Wang, G., Fan, J., Liu, B., Cao, S., and Yu, J.: g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources 274, 77 (2015).CrossRefGoogle Scholar
Miao, X., Pan, K., Liao, Y., Zhou, W., Pan, Q., and Wang, G.: Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency. J. Mater. Chem. A 1, 9853 (2013).CrossRefGoogle Scholar
Wang, P., Zakeeruddin, S.M., Moser, J.E., Nazeeruddion, M.K., Sekiguchi, T., and Grätzel, M.: A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 402 (2003).CrossRefGoogle ScholarPubMed
Bai, Y., Cao, Y., Zhang, J., Wang, M., Li, R., Wang, P., Zakeeruddion, S.M., and Grätzel, M.: High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7, 626 (2008).CrossRefGoogle ScholarPubMed
Manju, J. and Jawhar, S.M.J.: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).CrossRefGoogle Scholar
Pan, K., Zhou, W., Tian, G., Pan, Q., Tian, C., Xie, T., Dong, Y., Wang, D., and Fu, H.: Dye-sensitised solar cells based on large‐pore mesoporous TiO2 with controllable pore diameters. Eur. J. Inorg. Chem. 30, 4730 (2011).CrossRefGoogle Scholar
Chen, C.Y., Wang, M., Li, J.Y., Pootrakulchote, N., Alibabaei, L., Ngocle, C., Decoppet, J.D., Tsai, J.H., Grätzel, C., Wu, C.G., Zakeeruddin, S.M., and Grätzel, M.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103 (2009).CrossRefGoogle ScholarPubMed
Park, K., Zhang, Q., Myers, D., and Cao, G.: Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells. ACS Appl. Mater. Interfaces 5, 1044 (2013).CrossRefGoogle Scholar
Roy, P., Kim, D., Lee, K., Spiecker, E., and Schmuki, P.: TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45 (2010).CrossRefGoogle ScholarPubMed
Akilavasan, J., Wijeratne, K., Moutinho, H., Al-Jassim, M., Alamoud, A.R.M., Rajapakse, R.M.G., and Bandara, J.: Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. J. Mater. Chem. A 1, 5377 (2013).CrossRefGoogle Scholar
Barai, H.R., Banerjee, A.N., Bai, F., and Joo, S.W.: Surface modification of titania nanotube arrays with crystalline manganese-oxide nanostructures and fabrication of hybrid electrochemical electrode for high-performance supercapacitors. J. Ind. Eng. Chem. 62, 409 (2018).CrossRefGoogle Scholar
Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Ling, T., Song, J.G., Chen, X.Y., Yang, J., Qiao, S.Z., and Du, X.W.: Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. J. Alloys Compd. 546, 307 (2013).CrossRefGoogle Scholar
Riaz, A., Qi, H., Fang, Y., Xu, J., Zhou, C., Jin, Z., Hong, Z., Zhi, M., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).CrossRefGoogle Scholar
Zhu, K., Neale, N.R., Miedaner, A., and Frank, A.J.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).CrossRefGoogle ScholarPubMed
Qiao, X.D., Liu, Y.Y., Huang, G.L., Lei, B.X., Sun, W., and Sun, Z.F.: A multifunctional photoanode made of titania submicrospheres and titania nanoparticles modified titania nanotube arrays on FTO glass for dye-sensitized solar cells. Mater. Sci. Semicond. Process. 57, 99 (2017).CrossRefGoogle Scholar
Mathew, A., Rao, G.M., and Munichandraiah, N.: Enhanced efficiency of tri-layered dye solar cells with hydrothermally synthesized titania nanotubes as light scattering outer layer. Thin Solid Films 520, 3581 (2012).CrossRefGoogle Scholar
Liu, J., Huo, J., Zhang, M., and Dong, X.: Branched TiO2 nanorod arrays owning the surface anatase/rutile junctions for dye sensitized solar cells. Thin Solid Films 623, 25 (2017).CrossRefGoogle Scholar
Hu, H., Shen, J., Cao, X., Wang, H., Lv, H., Zhang, Y., Zhu, W., Zhao, J., and Cui, C.: Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced efficiency. J. Alloys Compd. 694, 653 (2017).CrossRefGoogle Scholar
Pan, K., Dong, Y., Zhou, W., Wang, G., Pan, Q., Yuan, Y., Miao, X., and Tian, G.: TiO2–B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochim. Acta 88, 263 (2013).CrossRefGoogle Scholar
Yuan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).CrossRefGoogle Scholar
Liu, Y., Su, D., Zhang, Y., Wang, L., Yang, G., Shen, F., Deng, S., Zhang, X., and Zhang, S.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).CrossRefGoogle Scholar
Fu, N., Liu, Y., Liu, Y., Lu, W., Zhou, L., Peng, F., and Huang, H.: Facile preparation of hierarchical TiO2 nanowire–nanoparticle/nanotube architecture for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 3, 20366 (2015).CrossRefGoogle Scholar
Gao, R., Cui, Y., Liu, X., Wang, L., and Cao, G.: A ZnO nanorod/nanoparticle hierarchical structure synthesized through a facile in situ method for dye-sensitized solar cells. J. Mater. Chem. A 2, 4765 (2014).CrossRefGoogle Scholar
Zeng, T., Ni, H., Su, X., Chen, Y., and Jiang, Y.: Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. J. Power Sources 283, 443 (2015).CrossRefGoogle Scholar
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Chen, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Liveri, V.T.: Controlled Synthesis of Nanoparticles in Microheterogeneous Systems (Springer-Verlag: Heidelberg, 2006).Google Scholar
Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018). https://doi.org/10.1557/jmr.2018.294.CrossRefGoogle Scholar
Shi, J., Guo, P., Liu, Y., Su, J., and Guo, L.: PbO-sensitized ZnO nanorod arrays for enhanced visible-light-driven photoelectrochemical performance. J. Mater. Res. 31, 1622 (2016).CrossRefGoogle Scholar
Nazeeruddin, M.K., Zazeeruddin, S.M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C-H., and Grätzel, M.: Acid–base equilibria of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 38, 6298 (1999).CrossRefGoogle Scholar
Yu, J., Yu, J.C., Leung, M.K.P., Ho, W.K., Cheng, B., Zhang, X.J., and Zhang, J.C.: Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 217, 69 (2003).Google Scholar
Yu, J.G., Yu, J.C., Cheng, B., Hark, S.K., and Lu, K.: The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. J. Solid State Chem. 174, 372 (2003).CrossRefGoogle Scholar
Gao, M., Xu, Y., Bai, Y., and Jin, S.: Synthesis and characterization of Nb, F-codoped titania nanoparticles for dye-sensitized solar cells. J. Mater. Res. 29, 230 (2014).CrossRefGoogle Scholar
Qi, L., Yin, Z., Zhang, S., Ouyang, Q., Li, C., and Chen, Y.: The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J. Mater. Res. 29, 745 (2014).CrossRefGoogle Scholar
Zhang, G., Pan, K., Zhou, W., Yu, Y., Pan, Q., Jiang, B., Tian, G., Wang, G., Xie, Y., Dong, Y., Miao, X., and Tian, C.: Anatase TiO2 pillar-nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Trans. 41, 12683 (2012).CrossRefGoogle ScholarPubMed
Llaiyaraja, P., Das, T.K., Mocherla, P.S.V., and Sudakar, C.: Well-connected microsphere-nanoparticulate TiO2 composites as high performance photoanode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 169, 86 (2017).CrossRefGoogle Scholar
Qu, J., Li, G.R., and Gao, X.P.: One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells. Energy Environ. Sci. 3, 2003 (2010).CrossRefGoogle Scholar
Lin, Y.P., Lin, S.Y., Lee, Y.C., and Chen-Yang, Y.W.: High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. J. Mater. Chem. A 1, 9875 (2013).CrossRefGoogle Scholar
Grätzel, M.: Molecular photovoltaics that mimic photosynthesis. Pure Appl. Chem. 73, 459 (2001).CrossRefGoogle Scholar
Supplementary material: File

Yu et al. supplementary material

Figures S1-S3

Download Yu et al. supplementary material(File)
File 38.5 KB