Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:32:18.531Z Has data issue: false hasContentIssue false

Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding

Published online by Cambridge University Press:  05 September 2017

Hailiang Yu*
Affiliation:
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; and School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Cheng Lu
Affiliation:
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Kiet Tieu
Affiliation:
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Huijun Li*
Affiliation:
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Ajit Godbole
Affiliation:
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Xiong Liu
Affiliation:
School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Charlie Kong
Affiliation:
Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052, Australia
*
a) Address all correspondence to this author. e-mail: [email protected] or [email protected]
Get access

Abstract

Laminate sheets attract increasing attention from researchers and engineers. In this paper, Al/Ti/Al laminate sheets were fabricated by using cryogenic roll bonding for first time. The edge defects, mechanical properties, and interface bonding of laminate sheets by cryogenic roll bonding technique were compared with these by room-temperature roll bonding technique. Results show that there are some edge cracks in laminate sheets by room-temperature roll bonding while they do not appear when subjected to cryogenic roll bonding. The ultimate tensile stress of laminate sheets by cryogenic roll bonding increases up to 36.7% compared to that by room-temperature roll bonding. When laminate sheets are rolled to 0.125 mm from 2.025 mm, the interfaces between Al and Ti layers are bonded well for both cryogenic roll bonding and room-temperature roll bonding. Finally, we discussed the improvement in edge quality and mechanical properties and the mechanism of interface bonding of Al/Ti/Al laminate sheets during cryogenic roll bonding.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Bachmaier, A. and Pippan, R.: Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58, 41 (2013).CrossRefGoogle Scholar
Zeng, L.F., Gao, R., Fang, Q.F., Wang, X.P., Xie, Z.M., Miao, S., Hao, T., and Zhang, T.: High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 110, 341 (2016).Google Scholar
Atrian, A. and Fereshteh-Saniee, F.: Deep drawing process of steel/brass laminated sheets. Composites, Part B 47, 75 (2013).Google Scholar
Viswanathan, V., Laha, T., Balani, K., Agarwal, A., and Seal, S.: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng., A 54, 121 (2006).Google Scholar
Vecchio, K.S.: Synthetic multifunctional metallic-intermetallic laminate composites. JOM 57, 25 (2005).Google Scholar
Grujicie, M., Snipes, J.S., and Ramaswami, S.: Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation. AIMS Mater. Sci. 3, 686 (2016).Google Scholar
Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., and Kong, C.: Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater. Sci. Eng., A 660, 195 (2016).Google Scholar
Ma, M., Huo, P., Liu, W.C., Wang, G.J., and Wang, D.M.: Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding. Mater. Sci. Eng., A 636, 301 (2015).Google Scholar
Yu, H.L., Tieu, K., Lu, C., and Kong, C.: Abnormally high residual dislocation density in pure aluminum after Al/Ti/Al laminate annealing for seven days. Philos. Mag. Lett. 94, 732 (2014).Google Scholar
Qu, P., Zhou, L., Xu, H., and Acoff, V.L.: Microtexture development of niobium in a multilayered Ti/Al/Nb composite produced by accumulative roll bonding. Metall. Mater. Trans. A 45, 6217 (2014).Google Scholar
Qiu, X., Liu, R., Guo, S., Graeter, J.H., Kecskes, L., and Wang, J.: Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metall. Mater. Trans. A 40, 1541 (2009).Google Scholar
Luo, J.G. and Acoff, V.L.: Using cold roll bonding and annealing to process Ti/Al multi-layered composites from element foils. Mater. Sci. Eng., A 379, 164 (2004).CrossRefGoogle Scholar
Hosseini, M. and Danesh Manesh, H.: Bonding strength optimization of Ti/Cu/Ti clad composite produced by roll-bonding. Mater. Des. 81, 122 (2015).Google Scholar
Yu, H.L., Tieu, K., Lu, C., Liu, X., Godbole, A., Li, H.J., Kong, C., and Qin, Q.H.: A deformation mechanism of hard metal surrounded by soft metal during roll forming. Sci. Rep. 4, 5017 (2014).CrossRefGoogle ScholarPubMed
Kim, J.S., Lee, D.H., Jung, S.P., Lee, K.S., Kim, K.J., Kim, H.S., Lee, B.J., Chang, Y.W., Yuh, J., and Lee, S.: Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties. Sci. Rep. 6, 26333 (2016).Google Scholar
Kim, J.S., Lee, K.S., Kwon, Y.N., Lee, B.J., Chang, Y.W., and Lee, S.: Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Mater. Sci. Eng., A 628, 1 (2015).Google Scholar
Reihanian, M. and Naseri, M.: An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater. Des. 89, 1213 (2016).Google Scholar
Lee, K.S., Lee, S.E., Sung, H.K., Lee, D.H., Kim, J.S., Chang, Y.W., Lee, S., and Kwon, Y.N.: Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets. Mater. Sci. Eng., A 583, 177 (2013).Google Scholar
Akramifard, H.R., Mirzadeh, H., and Parsa, M.H.: Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties. Mater. Sci. Eng., A 613, 232 (2014).Google Scholar
Beygi, R. and Kazeminezhad, M.: The effects of annealing phenomena on the energy absorption of roll-bonded Al-steel sheets during wedge tearing. Mater. Sci. Eng., A 527, 7329 (2010).Google Scholar
Jamaati, R. and Toroghinejad, M.: Cold roll bonding bond strengths: Review. Mater. Sci. Technol. 27, 1101 (2011).Google Scholar
Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., and Zhang, S.H.: Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: A review. Adv. Eng. Mater. 18, 754 (2016).Google Scholar
Yan, J.C., Zhao, D.S., Wang, C.W., Wang, L.Y., Wang, Y., and Yang, S.Q.: Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater. Sci. Technol. 25, 914 (2009).Google Scholar
Yu, H.L., Liu, X.H., Li, X.W., and Godbole, A.: Crack healing in a low-carbon steel under hot plastic deformation. Metall. Mater. Trans. A 45, 1001 (2014).Google Scholar
Quadir, M.Z., Al-Buhamad, O., Bassman, L., and Ferry, M.: Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta Mater. 55, 5438 (2007).Google Scholar
Göken, M. and Höppel, H.W.: Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding. Adv. Mater. 23, 2663 (2011).Google Scholar
Li, L., Nagai, K., and Yin, F.: Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9, 023001 (2008).Google Scholar
Yu, H.L., Lu, C., Tieu, K., and Kong, C.: Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater. Manuf. Processes 29, 448 (2014).Google Scholar
Jamaati, R., Toroghinejad, M.R., Amirkhanlou, S., and Edris, H.: On the achievement of nanostructured interstitial free steel by four-layer accumulative roll bonding process at room temperature. Metall. Mater. Trans. A 46, 4013 (2015).Google Scholar
Yu, H.L., Tieu, K., Lu, C., and Godbole, A.: An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques. Metall. Mater. Trans. A 45, 4038 (2014).Google Scholar
Li, X., Zu, G., Ding, M., Mu, Y., and Wang, P.: Interfacial microstructural and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical rolling bonding and annealing. Mater. Sci. Eng., A 529, 485 (2011).Google Scholar
Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., Kong, C., and Zhao, X.: Simultaneous grain growth and grain refinement in bulk ultrafine-grained copper under tensile deformation at room temperature. Metall. Mater. Trans. A 47, 3785 (2016).Google Scholar
Shi, Y., Li, M., Guo, D., Ma, T., Zhang, Z., Li, X., Zhang, G., and Zhang, X.: Extraordinary toughening by cryorolling in Zr. Adv. Eng. Mater. 16, 167 (2014).Google Scholar
Immanuel, R. and Panigrahi, S.: Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy. Mater. Sci. Eng., A 640, 424 (2015).Google Scholar
Xu, Z., Liu, M., Jia, Z., and Roven, H.J.: Effect of cryorolling on microstructure and mechanical properties of a peak-aged AA6082 extrusion. J. Alloys Compd. 695, 827 (2017).CrossRefGoogle Scholar
Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar
Yu, H.L., Wang, H., Lu, C., Tieu, K., Li, H.J., Godbole, A., Liu, X., Kong, C., and Zhao, X.: Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling. J. Mater. Res. 31, 797 (2016).Google Scholar
Tsuji, N., Saito, Y., Lee, S.H., and Minamino, Y.: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5, 338 (2003).Google Scholar
Chaudhari, G.P. and Acoff, V.L.: Titanium aluminid sheets made using roll bonding and reaction annealing. Intermetallics 18, 472 (2010).Google Scholar
Roy, S., Nataraj, B.R., Suwas, S., Kumar, S., and Chattopadhyay, K.: Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties. Mater. Des. 36, 529 (2012).Google Scholar
Yu, H.L., Su, L.H., Lu, C., Tieu, K., Li, H.J., Li, J.T., Godbole, A., and Kong, C.: Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing. Mater. Sci. Eng., A 674, 256 (2016).CrossRefGoogle Scholar
Glazer, J., Verzasconi, S.L., Sawtell, R.R., and Morris, J.W. Jr.: Mechanical behavior of aluminum–lithium alloys at cryogenic temperatures. Metall. Trans. A 18, 1695 (1987).Google Scholar
Park, D.H., Choi, S.W., Kim, J.H., and Lee, J.M.: Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants. Cryogenics 68, 44 (2015).Google Scholar
Yu, H.L., Lu, C., Tieu, K., Liu, X.H., Sun, Y., Yu, Q.B., and Kong, C.: Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Sci. Rep. 2, 772 (2012).CrossRefGoogle ScholarPubMed
Yu, H.L., Tieu, K., Lu, C., Liu, X.H., Godbole, A., and Kong, C.: Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment. Mater. Sci. Eng., A 568, 212 (2013).Google Scholar
Zhang, S., Li, R., Kang, H., Chen, Z., Wang, W., Zou, C., Li, T., and Wang, T.: A high strength and high electrical conductivity Cu–Cr–Zr alloy fabricated by cryorolling and intermediate aging treatment. Mater. Sci. Eng., A 680, 108 (2017).CrossRefGoogle Scholar
Naga Krishna, N., Ashfaq, M., Susila, P., Sivaprasad, K., and Venkateswarlu, K.: Mechanical anisotropy and microstructural changes during cryorolling of Al–Mg–Si alloy. Mater. Charact. 107, 302 (2015).Google Scholar
Legros, M., Gianola, D.S., and Hemker, K.J.: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 2280 (2008).Google Scholar
Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H.S., Li, X.D., and Mukherjee, A.K.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).Google Scholar
Yu, H.L., Tieu, K., Hadi, S., Lu, C., Godbole, A., and Kong, C.: High strength and ductility of ultrathin laminate foils using accumulative roll bonding and asymmetric rolling. Metall. Mater. Trans. A 46, 869 (2015).CrossRefGoogle Scholar