Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T02:08:59.988Z Has data issue: false hasContentIssue false

Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation

Published online by Cambridge University Press:  02 November 2015

Kaixiong Tu
Affiliation:
Department of Chemistry, Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931, USA
Fengyu Li
Affiliation:
Department of Chemistry, Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931, USA
Zhongfang Chen*
Affiliation:
Department of Chemistry, Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Density functional theory computations were performed to investigate the adsorption and diffusion properties of lithium (Li) on tin disulfides nanosheets and its derived nanoribbons (NRs), in comparison with SnS2 bulk in 1T phase. The Li adsorption energies and migration barriers are comparable in SnS2 bulk and bilayer, and Li adsorbed at the octahedral sites has the highest binding energy in both SnS2 bulk and bilayer. Reducing the dimension of SnS2 to monolayer significantly lowers the Li diffusion barrier while keeping a considerable binding energy, and lithium favors the hollow sites which corresponding to the octahedral sites in bulk phase. Due to the edge effect, SnS2NRs gain an enhanced Li binding strength, increased Li mobility, and improved Li capacity. Thus, SnS2 NRs are a promising candidate for anode materials of Li-ion batteries with a high power density and fast charge/discharge rates.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, N., Wu, H., McDowell, M.T., Yao, Y., Wang, C.M., and Cui, Y.: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315 (2012).CrossRefGoogle ScholarPubMed
Shin, H.C. and Liu, M.: Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15(4), 582586 (2005).CrossRefGoogle Scholar
Bhardwaj, T., Antic, A., Pavan, B., Barone, V., and Fahlman, B.D.: Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 132(36), 12556 (2010).Google Scholar
Li, Y., Wu, D., Zhou, Z., Cabrera, C.R., and Chen, Z.: Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study. J. Phys. Chem. Lett. 3(16), 2221 (2012).Google Scholar
Jing, Y., Zhou, Z., Cabrera, C.R., and Chen, Z.: Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries. J. Phys. Chem. C 117(48), 25409 (2013).CrossRefGoogle Scholar
Bhandavat, R., David, L., and Singh, G.: Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523 (2012).Google Scholar
Chan, C.K., Peng, H., Twesten, R.D., Jarausch, K., Zhang, X.F., and Cui, Y.: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490 (2007).Google Scholar
Mai, L.Q., Hu, B., Chen, W., Qi, Y.Y., Lao, C.S., Yang, R.S., Dai, Y., and Wang, Z.L.: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19(21), 3712 (2007).Google Scholar
Kil, E-H., Choi, K-H., Ha, H-J., Xu, S., Rogers, J.A., Kim, M.R., Lee, Y-G., Kim, K.M., Cho, K.Y., and Lee, S-Y.: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped ;ithium-ion batteries. Adv. Mater. 25(10), 1395 (2013).Google Scholar
Chang, K. and Chen, W.: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 47204728 (2011).Google Scholar
Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., and van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005).Google Scholar
Uthaisar, C. and Barone, V.: Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10(8), 2838 (2010).Google Scholar
Tang, Q. and Zhou, Z.: Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58(8), 1244 (2013).Google Scholar
Holtz, M.E., Yu, Y., Gunceler, D., Gao, J., Sundararaman, R., Schwarz, K.A., Arias, T.A., Abruña, H.D., and Muller, D.A.: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14(3), 1453 (2014).Google Scholar
Jing, Y., Zhou, Z., Cabrera, C.R., and Chen, Z.: Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2(31), 12104 (2014).Google Scholar
Hwang, H., Kim, H., and Cho, J.: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826 (2011).Google Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).CrossRefGoogle ScholarPubMed
Woulfe, P.:Experiments to show the Nature of Aurum Mosaicum: By Mr. Peter Woulfe, F.R.S. Philos. Trans. 61, 114 (1771).Google Scholar
Palosz, B., Steurer, W., and Schulz, H.: Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Crystallogr., Sect. B 46(4), 449 (1990).Google Scholar
Jiang, T. and Ozin, G.A.: New directions in tin sulfide materials chemistry. J. Mater. Chem. 8(5), 1099 (1998).CrossRefGoogle Scholar
Fong, C.Y. and Cohen, M.L.: Electronic energy-band structure of SnS2 and SnSe2 . Phys. Rev. B 5(8), 3095 (1972).Google Scholar
Suryawanshi, S.R., Warule, S.S., Chaudhari, N.S., Ogale, S.B., and More, M.A.: Photo-enhanced field emission characteristics of SnS2 nanosheets. AIP Conf. Proc. 1591, 342 (2014).Google Scholar
Zhang, Y.C., Li, J., Zhang, M., and Dionysiou, D.D.: Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 45(21), 9324 (2011).CrossRefGoogle ScholarPubMed
Li, J., Yang, Z., Tang, Y., Zhang, Y., and Hu, X.: Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens. Bioelectron. 41, 698 (2013).Google Scholar
Luo, B., Fang, Y., Wang, B., Zhou, J., Song, H., and Zhi, L.: Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 5(1), 5226 (2012).Google Scholar
Hong, S.Y., Popovitz-Biro, R., Prior, Y., and Tenne, R.: Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape. J. Am. Chem. Soc. 125(34), 10470 (2003).Google Scholar
Seo, J-w., Jang, J-t., Park, S.-w., Kim, C., Park, B., and Cheon, J.: Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 20(22), 4269 (2008).CrossRefGoogle Scholar
Yujie, J., Hui, Z., Xiangyang, M., Jin, X., and Deren, Y.: Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method. J. Phys.: Condens. Matter 15(44), L661 (2003).Google Scholar
Lin, Y-T., Shi, J-B., Chen, Y-C., Chen, C-J., and Wu, P-F.: Synthesis and characterization of tin disulfide (SnS2) nanowires. Nanoscale Res. Lett. 4(7), 694 (2009).CrossRefGoogle ScholarPubMed
Chen, D., Shen, G.Z., Tang, K.B., Liu, Y.K., and Qian, Y.T.: Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. Appl. Phys. A 77(6), 747 (2003).Google Scholar
Momma, T., Shiraishi, N., Yoshizawa, A., Osaka, T., Gedanken, A., Zhu, J., and Sominski, L.: SnS2 anode for rechargeable lithium battery. J. Power Sources 97–98,198 (2001).CrossRefGoogle Scholar
Mukaibo, H., Yoshizawa, A., Momma, T., and Osaka, T.: Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources 119–121,60 (2003).Google Scholar
Kim, H.S., Chung, Y.H., Kang, S.H., and Sung, Y-E.: Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54(13), 3606 (2009).CrossRefGoogle Scholar
Liu, S., Yin, X., Hao, Q., Zhang, M., Li, L., Chen, L., Li, Q., Wang, Y., and Wang, T.: Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 64(21), 2350 (2010).CrossRefGoogle Scholar
Zhong, H., Yang, G., Song, H., Liao, Q., Cui, H., and Shen, P., and Wang, C-X.: Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 116(16), 9319 (2012).CrossRefGoogle Scholar
Huang, Y., Ling, C., Chen, X., Zhou, D., and Wang, S.: SnS2 nanotubes: A promising candidate for the anode material for lithium ion batteries. RSC Adv. 5(41), 32505 (2015).CrossRefGoogle Scholar
Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756 (2000).CrossRefGoogle Scholar
Delley, B.: An all‐electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508 (1990).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).CrossRefGoogle ScholarPubMed
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244 (1992).Google Scholar
Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787 (2006).Google Scholar
Ortmann, F., Bechstedt, F., and Schmidt, W.G.: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006).Google Scholar
Carrasco, J.: Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: Alkali and alkaline-earth ion insertion into V2O5 . J. Phys. Chem. C 118(34), 19599 (2014).CrossRefGoogle Scholar
Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., and Andzelm, J.: A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28(2), 250 (2003).CrossRefGoogle Scholar
Palosz, B. and Salje, E.: Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2 . J. Appl. Cryst. 22(6), 622 (1989).Google Scholar
Lefebvre-Devos, I., Olivier-Fourcade, J., Jumas, J.C., and Lavela, P.: Lithium insertion mechanism in SnS2 . Phys. Rev. B 61(4), 31103116 (2000).Google Scholar
Tibbetts, K., Miranda, C.R., Meng, Y.S., and Ceder, G.: An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem. Mater. 19(22), 5302 (2007).Google Scholar
Uthaisar, C., Barone, V., and Peralta, J.E.: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106(11), 113715 (2009).CrossRefGoogle Scholar
Li, L.Z., Li, H., Zhou, J., Lu, J., Qin, R., Gao, Z.X., and Mei, W.N.: Electronic structure and stability of ultranarrow single-layer SnS2 nanaoribbons: A first-principles study. J. Comput. Theor. Nanosci. 7(10), 2100 (2010).Google Scholar
Li, F., Cabrera, C.R., and Chen, Z.: Theoretical design of MoO3-based high-rate lithium ion battery electrodes: The effect of dimensionality reduction. J. Mater. Chem. A 2(45), 19180 (2014).Google Scholar