Published online by Cambridge University Press: 16 May 2016
Microstructure evolution and tensile properties of large dimensional bulk 304 stainless steel after being rolled with different thickness reductions were characterized in detail. The results showed that the steel consisted of nano-submicro-microcrystalline austenite and nanocrystalline ferrite. Submicrocrystalline austenite was broken down with the thickness reduction, when thickness reduction was 70%, all submicrocrystalline were broken down to nanocrocrystalline, and dispersed more uniformly in the microcrystalline austenite phase in the steel, but the grain size of the nanocrystalline austenite increased to 70 nm. Tensile strength increased from 850 MPa to 965 MPa, yield strength increased from 652 MPa to 837 MPa, elongation decreased from 33% to 19%, intergranular corrosion rate decreased from 1.36 g/(m2 h) to 0.46 g/(m2 h). Strength and intergranular corrosion properties increased much. When the thickness reduction was 70%, the tensile strength, yield strength, elongation, and intergranular corrosion properties were the best in the reported value of the steel.