Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T06:41:37.139Z Has data issue: false hasContentIssue false

Enhanced energy storage performance and fatigue resistance of Mn-doped 0.7Na0.5Bi0.5TiO3–0.3Sr0.7Bi0.2TiO3 lead-free ferroelectric ceramics

Published online by Cambridge University Press:  04 November 2020

Jinbo Wang
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Huiqing Fan*
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The validity of Mn element on enhanced energy storage performance and fatigue resistance of Mn-doped 0.7Na0.5Bi0.5TiO3–0.3Sr0.7Bi0.2TiO3 lead-free ferroelectric ceramics (BNT–BST–xMn) is certified by doping. The effects of Mn modification on the dielectric behavior, ferroelectric, energy storage properties, and AC impedance are comprehensively investigated. It is found that the average grain size of the ceramics modified by Mn additions is reduced slightly. Moreover, the relaxor properties are evidently enhanced with the increased Mn content. The AC impedance spectra can even better clarify the dielectric response and relaxor behavior. The results suggest that both of the dielectric response and relaxor behavior are determined by defects especially concentration of the oxygen vacancy. The superior energy storage properties are realized at x = 0.05 with an energy storage density (Wrec) of 1.33 J/cm3 as well as energy storage efficiency (η) of 86.2% at 100 kV/cm, accompanied with a superior thermal stability. BNT–BST–5Mn ceramics can maintain a stable energy storage performance within 106 fatigue cycles, indicating an excellent fatigue resistance.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandrasekhar, M. and Kumar, P.: Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 55745580 (2015).CrossRefGoogle Scholar
Roedel, J., Jo, W., Seifert, K.T.P., Anton, E., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 11531177 (2009).CrossRefGoogle Scholar
Li, T., Fan, H., Long, C., Dong, G., and Sun, S.: Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates. J. Alloys Compd. 609, 6067 (2014).CrossRefGoogle Scholar
Fan, P.Y., Zhang, S.T., Xu, J.W., Zang, J.D., Samart, C., Zhang, T., Tan, H., Salamon, D., Zhang, H.B., and Liu, G.: Relaxor/antiferroelectric composites: A solution to achieve high energy storage performance in lead-free dielectric ceramics. J. Mater. Chem. C 8, 56815691 (2020).CrossRefGoogle Scholar
Zhao, L., Liu, Q., Gao, J., Zhang, S., and Li, J.: Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017).CrossRefGoogle ScholarPubMed
Kumar, A., Prasad, V.V.B., Raju, K.C.J., and James, A.R.: Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci.: Mater. Electron. 26, 37573765 (2015).Google Scholar
Li, W., Zhou, D., and Pang, L.: Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110, 032903 (2017).CrossRefGoogle Scholar
Sumang, R., Cann, D.P., Kumar, N., and Bongkarn, T.: Large strain in lead-free piezoelectric (1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique. Ceram. Int. 41, 127135 (2015).CrossRefGoogle Scholar
Gao, F., Dong, X., Mao, C., Zhang, H., Cao, F., and Wang, G.: Poling temperature tuned electric-field-induced ferroelectric to antiferroelectric phase transition in 0.89Bi0.5Na0.5TiO3-0.06 BaTiO3-0.05K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 110, 094109 (2011).CrossRefGoogle Scholar
Qiao, X., Chen, X., Lian, H., Zhou, J., and Liu, P.: Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 39954001 (2016).CrossRefGoogle Scholar
Nagata, H. and Takenaka, T.: Additive effects on electrical properties of Bi1/2Na1/2TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 12991302 (2001).CrossRefGoogle Scholar
Roedel, J., Webber, K.G., Dittmer, R., Jo, W., Kimura, M., and Damjanovic, D.: Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 16591681 (2015).CrossRefGoogle Scholar
Tian, H.Y., Wang, D.Y., Lin, D.M., Zeng, J.T., Kwok, K.W., and Chan, H.L.W.: Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3-Ba(Hf, Ti)O3 lead-free ceramics. Solid State Commun. 142, 1014 (2007).CrossRefGoogle Scholar
Meng, W., Zuo, R., Su, S., Wang, X., and Li, L.: Two-step sintering and electrical properties of sol-gel derived 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 22, 18411847 (2011).Google Scholar
Xu, Q., Lanagan, M.T., Huang, X., Xie, J., Zhang, L., Hao, H., and Liu, H.: Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram. Int. 42, 97289736 (2016).CrossRefGoogle Scholar
Wang, Y., Lv, Z., Xie, H., and Cao, J.: High energy-storage properties of (Bi1/2Na1/2)0.94Ba0.06La1-x ZrxTiO3 lead-free anti-ferroelectric ceramics. Ceram. Int. 40, 43234326 (2014).CrossRefGoogle Scholar
Li, Q., Zhou, C., Xu, J., Yang, L., Zhang, X., Zeng, W., Yuan, C., Chen, G., and Rao, G.: Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3-BaTiO3 ceramics by modulating Bi/Na ratio. J. Mater. Sci.: Mater. Electron. 27, 1081010815 (2016).Google Scholar
Gao, F., Dong, X., Mao, C., Cao, F., and Wang, G.: c/a Ratio-dependent energy-storage density in (0.9-x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc. 94, 41624164 (2011).CrossRefGoogle Scholar
Ding, J., Liu, Y., Lu, Y., Qian, H., Gao, H., Chen, H., and Ma, C.: Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater. Lett. 114, 107110 (2014).CrossRefGoogle Scholar
Xu, N., Liu, Y., Yu, Z., Yao, R., Ye, J., and Lu, Y.: Enhanced energy storage properties of lead-free (1-x)Bi0.5Na0.5TiO3-xSrTiO(3) antiferroelectric ceramics by two-step sintering method. J. Mater. Sci.: Mater. Electron. 27, 1247912484 (2016).Google Scholar
Cao, W.P., Sheng, J., Qiao, Y.L., Jing, L., Liu, Z., Wang, J., and Li, W.L.: Optimized strain with small hysteresis and high energy-storage density in Mn-doped NBT-ST system. J. Eur. Ceram. Soc. 39, 40464052 (2019).CrossRefGoogle Scholar
Ma, W., Zhu, Y., Marwat, M.A., Fan, P., Xie, B., Salamon, D., Ye, Z.-G., and Zhang, H.: Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281288 (2019).CrossRefGoogle Scholar
Ang, C. and Yu, Z.: High remnant polarization in Sr0.7Bi0.2TiO3-Na0.5Bi0.5TiO3 solid solutions. Appl. Phys. Lett. 95, 232908 (2009).CrossRefGoogle Scholar
Li, Q., Yao, Z., Ning, L., Gao, S., Hu, B., Dong, G., and Fan, H.: Enhanced energy-storage properties of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Ceram. Int. 44, 27822788 (2018).CrossRefGoogle Scholar
Qiao, X., Wu, D., Zhang, F., Niu, M., Chen, B., Zhao, X., Liang, P., Wei, L., Chao, X., and Yang, Z.: Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 47784784 (2019).CrossRefGoogle Scholar
Li, Q.-N., Zhou, C.-R., Xu, J.-W., Yang, L., Zhang, X., Zeng, W.-D., Yuan, C.-L., Chen, G.-H., and Rao, G.-H.: Ergodic relaxor state with high energy storage performance induced by doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 ceramics. J. Electron. Mater. 45, 51465151 (2016).CrossRefGoogle Scholar
Ren, P., Liu, Z., Wang, X., Duan, Z., Wan, Y., Yan, F., and Zhao, G.: Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1 square 0.1TiO3 based ceramics. J. Alloys Compd. 742, 683689 (2018).CrossRefGoogle Scholar
Li, W., Zhou, D., and Pang, L.: Structure and energy storage properties of Mn-doped (Ba,Sr)TiO3-MgO composite ceramics. J. Mater. Sci.: Mater. Electron. 28, 87498754 (2017).Google Scholar
Peng, P., Nie, H., Liu, Z., Ren, W., Cao, F., Wang, G., and Dong, X.: Enhanced ferroelectric properties and thermal stability of Mn-doped 0.96(Bi-0.5 Na-0.5)TiO3-0.04BiAlO(3) ceramics. J. Am. Ceram. Soc. 100, 10301036 (2017).CrossRefGoogle Scholar
Wang, C., Lou, X., Xia, T., and Tian, S.: The dielectric, strain and energy storage density of BNT-BKHxTi1-x piezoelectric ceramics. Ceram. Int. 43, 92539258 (2017).CrossRefGoogle Scholar
Shi, J., Fan, H., Liu, X., and Bell, A.J.: Large electrostrictive strain in Bi0.5Na0.5 TiO3-BaTiO3-Sr0.7Bi0.2TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848853 (2014).CrossRefGoogle Scholar
Lin, D., Kwok, K.W., and Chan, H.L.W.: Structure and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Solid State Ionics 178, 19301937 (2008).Google Scholar
Wang, Y., Shen, Z., Li, Y., Wang, Z., Luo, W., and Hong, Y.: Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x < = 0.4) paraelectric ceramics. Ceram. Int. 41, 82528256 (2015).CrossRefGoogle Scholar
Sellappan, P., Tang, C., Shi, J., and Garay, J.E.: An integrated approach to doped thin films with strain-tunable magnetic anisotropy: Powder synthesis, target preparation and pulsed laser deposition of Bi:YIG. Mater. Res. Lett. 5, 4147 (2017).CrossRefGoogle Scholar
Chandrasekhar, M., Sonia, , and Kumar, P.: Synthesis and characterizations of NaNbO3 modified BNT-BT-BKT ceramics for energy storage applications. Physica B 497, 5966 (2016).CrossRefGoogle Scholar
Liu, Z., Fan, H., Lei, S., Ren, X., and Long, C.: Duplex structure in K0.5Na0.5NbO3-SrZrO3 ceramics with temperature-stable dielectric properties. J. Eur. Ceram. Soc. 37, 115122 (2017).CrossRefGoogle Scholar
Li, M., Li, L., Zang, J., and Sinclair, D.C.: Donor-doping and reduced leakage current in Nb-doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015).CrossRefGoogle Scholar
Yao, M., Pu, Y., Zhang, L., and Chen, M.: Enhanced energy storage properties of (1-x)Bi0.5Na0.5TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Mater. Lett. 174, 110113 (2016).CrossRefGoogle Scholar
Li, Q., Wang, J., Ma, Y., Ma, L., Dong, G., and Fan, H.: Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 modified by CaZrO3. J. Alloys Compd. 663, 701707 (2016).CrossRefGoogle Scholar
Cao, W.P., Li, W.L., Dai, X.F., Zhang, T.D., Sheng, J., Hou, Y.F., and Fei, W.D.: Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593600 (2016).CrossRefGoogle Scholar
Liu, Z., Ren, P., Long, C., Wang, X., Wan, Y., and Zhao, G.: Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538544 (2017).CrossRefGoogle Scholar
Pu, Y., Yao, M., Zhang, L., and Jing, P.: High energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.9-xZr0.1SnxO3 ceramics. J. Alloys Compd. 687, 689695 (2016).CrossRefGoogle Scholar
Long, C., Chang, Q., Wu, Y., He, W., Li, Y., and Fan, H.: New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5-xTi4O15: Crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 88528864 (2015).CrossRefGoogle Scholar
Liu, Z., Fan, H., and Li, M.: High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core-shell microstructures. J. Mater. Chem. C 3, 58515858 (2015).CrossRefGoogle Scholar
Liu, G., Fan, H., Shi, J., and Liu, Z.: Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram. Int. 42, 39383946 (2016).CrossRefGoogle Scholar
Li, M. and Sinclair, D.C.: The extrinsic origins of high permittivity and its temperature and frequency dependence in Y0.5Ca0.5MnO3 and La1.5Sr0.5NiO4 ceramics. J. Appl. Phys. 111, 759 (2012).Google Scholar
Hu, B., Fan, H., Ning, L., Gao, S., Yao, Z., and Li, Q.: Enhanced energy-storage performance and dielectric temperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram. Int. 44, 1096810974 (2018).CrossRefGoogle Scholar