Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:36:26.812Z Has data issue: false hasContentIssue false

Enhanced bone regeneration of zirconia-toughened alumina nanocomposites using PA6/HA nanofiber coating via electrospinning

Published online by Cambridge University Press:  26 November 2018

Hamid Esfahani*
Affiliation:
Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran
Mahsa Darvishghanbar
Affiliation:
Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran
Behzad Farshid
Affiliation:
Materials Science & Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794-2275, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, the bioactivity and cytocompatibility of electrospun polyamide 6 (PA6)/hydroxyapatite (HA) coating on zirconia-toughened alumina (ZTA) were investigated. Adjusting the PA6/HA ratio to 1.15 (w/w) had a significant role in achieving an appropriate fibrous coating with an average diameter of 120 ± 10 nm and surface porosity of 64.3%. The surface of bare and coated samples was hydrophilic, which promoted bone regeneration. The adhesion test of the PA6/HA mat demonstrated that a cohesive coating was formed on the ZTA via electrospinning. The in vitro bioactivity test of the PA6/HA coating in simulated body fluid (SBF) corroborated the formation of a nanostructured bonelike apatite phase. Cytocompatibility of the samples was evaluated through in vitro osteosarcoma-like cell (MG63) culture assays. The cytotoxicity study showed that the electrospun PA6/HA coating significantly improved cell attachment and spreading. The development of such bioactive, biomedical coatings opens new avenues for bone tissue engineering applications.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

NievethithaSethu, S., Namashivayam, S., Devendran, S., Nagarajan, S., Tsai, W.B., Narashiman, S., Ramachandran, M., and Ambigapathi, M.: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int. J. Biol. Macromol. 98, 67 (2017).Google Scholar
Dziadek, M., Stodolak-Zych, E., and Cholewa-Kowalska, K.: Biodegradable ceramic–polymer composites for biomedical applications: A review. Mater. Sci. Eng., C 71, 1175 (2017).CrossRefGoogle ScholarPubMed
Moncal, K., Heo, D., Godzik, K., Sosnoski, D., Mrowczynski, O., Rizk, E., and Ozbolat, I.: 3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J. Mater. Res. 33, 1972 (2018).CrossRefGoogle Scholar
Mitic, Z., Stolić, A., Stojanovic, S., Najman, S., Ignjatovic, N., and MiroslavTrajanović, G.N.: Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Mater. Sci. Eng., C 79, 930 (2017).CrossRefGoogle ScholarPubMed
Basu, D. and Sarkar, B.: Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks. J. Mater. Res. 11, 3057 (1996).CrossRefGoogle Scholar
Kurtz, S.M., Arnholt, S.K.C., Huet, R., Ueno, M., and Walter, W.L.: Advances in zirconia toughened alumina biomaterials for total joint replacement. J. Mech. Behav. Biomed. Mater. 31, 107 (2014).CrossRefGoogle ScholarPubMed
Gautam, C., Joyner, J., Gautam, A., Rao, J., and Vajtai, R.: Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. 45, 19194 (2016).CrossRefGoogle ScholarPubMed
Sequeira, S., Fernandes, M.H., Neves, N., and Almeida, M.M.: Development and characterization of zirconia–alumina composites for orthopedic implants. Ceram. Int. 43, 693 (2017).CrossRefGoogle Scholar
Ercan, B. and Webster, T.J.: Better tissue engineering materials through the use of nanotechnology. Adv. Sci. Technol. 53, 58 (2006).CrossRefGoogle Scholar
Esfahani, H., Nemati, A., and Salahi, E.: Synthesis and characterization of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method. Adv. Appl. Ceram. 112, 140 (2013).CrossRefGoogle Scholar
Nandakumar, A., Yang, L., Habibovic, P., and van Blitterswijk, C.: Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26, 7380 (2010).CrossRefGoogle ScholarPubMed
Sweth, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., and Selvamurugan, N.: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47, 1 (2010).CrossRefGoogle Scholar
Gomez-Morales, J., Iafisco, M., Delgado-López, J.M., Sarda, S., and Drouet, C.: Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Prog. Cryst. Growth Charact. 59, 1 (2013).CrossRefGoogle Scholar
Shojai, M.S., Khorasani, M.T., and Jamshidi, A.: 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater. Sci. Eng., C 49, 835 (2015).CrossRefGoogle Scholar
Xiong, Y., Ren, C., Zhang, B., Yang, H., Lang, Y., Min, L., Zhang, W., Pei, F., Yan, Y., Li, H., and Mo, A.: Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int. J. Nanomed. 9, 485 (2014).CrossRefGoogle ScholarPubMed
Prasad S, S.,Ratha, I., Adarsh, T., Anand, A., Kumar Sinha, P., Diwan, P., Annapurna, K., and Biswas, K.: In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses. J. Mater. Res. 33, 178 (2018).CrossRefGoogle Scholar
Esfahani, H., Prabhakaran, M.P., Salahi, E., Tayebifard, A., Keyanpour-Rad, M., Rahimipour, M.R., and Ramakrishna, S.: Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm. J. Colloid Interface Sci. 443, 143 (2015).CrossRefGoogle ScholarPubMed
Yang, H., Xia, K., Wang, T., Niu, J., Song, Y., Xiong, Z., Zheng, K., Wei, S., and Lu, W.: Growth: In vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J. Alloys Compd. 672, 366 (2016).CrossRefGoogle Scholar
Ratha, I., Anand, A., Chatterjee, S., Kundu, B., and Suresh Kumar, G.: Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA. J. Mater. Res. 33, 1592 (2018).CrossRefGoogle Scholar
Latifi, S.M., Fathi, M.H., and Golozar, M.A.: Preparation and characterisation of bioactive hydroxyapatite–silica composite nanopowders via sol–gel method for medical applications. Adv. Appl. Ceram. 110, 8 (2011).CrossRefGoogle Scholar
Smitha, S., Shajesh, P., Mukundan, P., and Warrier, K.: Sol–gel synthesis of biocompatible silica–chitosan hybrids and hydrophobic coatings. J. Mater. Res. 23, 2053 (2008).CrossRefGoogle Scholar
Nieh, T.G., Jankowski, A.F., and Koike, J.: Processing and characterization of hydroxyapatite coatings on titanium produced by magnetron sputtering. J. Mater. Res. 16, 3238 (2011).CrossRefGoogle Scholar
Hidalgo-Robatto, B.M., Lopez-Alvarez, M., Azevedo, A.S., Dorado, J., Serra, J., Azevedo, N.F., and Gonzalez, P.: Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf. Coat. Technol. 333, 168 (2018).CrossRefGoogle Scholar
Xie, J., Peng, C., Zhao, Q., Wang, X., Yuan, H., Yang, L., Li, K., Lou, X., and Zhang, Y.: Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. ActaBiomater. 29, 365 (2016).Google ScholarPubMed
Vahabzadeh, S., Roy, M., Bandyopadhyay, A., and Bose, S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. ActaBiomater. 17, 47 (2015).Google ScholarPubMed
Faridi-Majidi, R., Nezafati, N., Pazouki, M., and Hesaraki, S.: The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J. Australas. Ceram. Soc. 53, 225 (2017).CrossRefGoogle Scholar
Jing, X., Mi, H.Y., Salick, M.R., Cordie, T., McNulty, J., Peng, X-F., and Turng, L.S.: In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ε-caprolactone) and polyethylenimine. J. Mater. Res. 30, 1808 (2015).CrossRefGoogle Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).CrossRefGoogle ScholarPubMed
Allo, B.A., Costa, D.O., Dixon, S.J., Mequanint, K., and Rizkalla, A.S.: Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J. Funct. Biomater. 3, 432 (2012).CrossRefGoogle ScholarPubMed
Brydone, A.S., Meek, D., and Maclaine, S.: Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng., Part H 224, 1329 (2010).CrossRefGoogle ScholarPubMed
Ben-Arfa, B.A.E., Miranda Salvado, I.M., Ferreira, J.M.F., and Pullar, R.C.: Novel route for rapid sol–gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater. Sci. Eng., C 70, 796 (2017).CrossRefGoogle ScholarPubMed
Monmaturapoj, N.: Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Met., Mater. Miner. 18, 15 (2008).Google Scholar
Salehi, S. and Fathi, M.H.: Fabrication and characterization of sol–gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents. Ceram. Int. 36, 1659 (2010).CrossRefGoogle Scholar
Shalabi, M.M., Gortemaker, A., Van’t Hof, M.A., Jansen, J.A., and Creugers, N.H.: Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 85, 496 (2006).CrossRefGoogle ScholarPubMed
Esfahani, H., Jose, R., and Ramakrishna, S.: Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications. Materials 10, 1238 (2017).CrossRefGoogle ScholarPubMed
Abdal-hay, A., Khalil, K.A., Al-Jassir, F.F., and Gamal-Eldeen, A.M.: Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells. Biomed. Mater. 12, 10 (2017).CrossRefGoogle ScholarPubMed
Ateş, S., Baran, E., and Yazıcı, B.: The nanoporous anodic alumina oxide formed by two-step anodization. Thin Solid Films 648, 94 (2018).CrossRefGoogle Scholar
Redon, R., Vazquez-Olmos, A., Mata-Zamora, M.E., Ordonez-Medrano, A., Rivera-Torres, F., and Saniger, J.M.: Contact angle studies on anodic porous alumina. J. Colloid Interface Sci. 287, 664 (2005).CrossRefGoogle ScholarPubMed
Santos, D., Silva, D.M., Gomes, P.S., Fernandes, M.H., Santos, J.D., and Sencadas, V.: Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications. J. Colloid Interface Sci. 504, 101 (2017).CrossRefGoogle ScholarPubMed
Aly, I.H.M., Mohammed, L.A.A., Al-Meer, S., Elsaid, K., and Barakat, N.A.M.: Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramic composite as a future implant material. Ceram. Int. 42, 11525 (2016).CrossRefGoogle Scholar
Algellai, A.A., Tomić, N., Vuksanović, M.M., Dojčinović, M., Volkov-Husović, T., Radojević, V., and Jančić Heinemann, R.: Adhesion testing of composites based on Bis-GMA/TEGDMA monomers reinforced with alumina based fillers on brass substrate. Composites, Part B 140, 164 (2018).CrossRefGoogle Scholar
Chen, P.: A preliminary discourse on adhesion of nanofibers derived from electrospun polymers. PhD dissertation, University of Akron, Akron (2013). Available at: https://ideaexchange.uakron.edu/mechanical_ideas/675.Google Scholar
Chlanda, A., Kijeńska, E., Rinoldi, C., Tarnowski, M., Wierzchoń, T., and Swieszkowski, W.: Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron 107, 79 (2018).CrossRefGoogle ScholarPubMed
Chapman, B.N.: Thin-film adhesion. J. Vac. Sci. Technol. 11, 106 (1974).CrossRefGoogle Scholar
Hughes-Brittain, N.F., Qiu, L., Picot, O.T., Wang, W., Cees, T.P., and Bastiaansen, W.M.: Surface texturing of electrospun fibres by photoembossing using pulsed laser interference holography and its effects on endothelial cell adhesion. Polymer 15, 40 (2017).CrossRefGoogle Scholar
ISO 26443:2008: Fine ceramics (advanced ceramics, advanced technical ceramics) rockwell indentation test for evaluation of adhesion of ceramic coatings.Google Scholar
Burg, K.J.L., Porter, S., and Kellam, J.F.: Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347 (2000).CrossRefGoogle ScholarPubMed
Wang, S., Hu, F., Li, J., Zhang, S., Shen, M., Huang, M., and Shi, X.: Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomed. Nanotechnol. Biol. Med. 14, 2505 (2017).CrossRefGoogle ScholarPubMed
Liu, Q., Li, W., Cao, L., Wang, J., Qu, Y., Wang, X., Qiu, R., Di, X., Wang, Z., and Liang, B.: Response of MG63 osteoblast cells to surface modification of Ti–6Al–4V implant alloy by laser interference lithography. J. Bionic Eng. 14, 448 (2017).CrossRefGoogle Scholar
Huang, Y.C., Hsiao, P.C., and Chai, H.J.: Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram. Int. 37, 1825 (2011).CrossRefGoogle Scholar
Begam, H., Kundu, B., Chanda, A., and Nandi, S.K.: MG63 osteoblast cell response on Zn doped hydroxyapatite (HAp) with various surface features. Ceram. Int. 43, 3752 (2017).CrossRefGoogle Scholar