Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T06:23:19.487Z Has data issue: true hasContentIssue false

Enhance plasticity of bulk metallic glasses by geometric confinement

Published online by Cambridge University Press:  31 January 2011

P. Yu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Y.H. Liu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
G. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
H.Y. Bai*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report that bulk metallic glasses (BMGs) with large plasticity can be obtained in conventional brittle BMGs by a shrink-fit metal sleeve. The mechanical performance especially the plasticity in the Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG with a shrink-fit copper sleeve is much enhanced. The approach results in the formation of the highly dense and frequent interacting and arresting events of shear bands and is the origin of the observed large global plasticity. The results present another simple step toward toughening the inherently brittle BMGs.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Zhang, T.Masumoto, T.: Al–La–Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans., JIM 30, 965 1989CrossRefGoogle Scholar
2Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 2007CrossRefGoogle Scholar
3Wang, W.H., Dong, C.Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004CrossRefGoogle Scholar
4Spaepen, F.: A microscopic mechanism for study state inhomogeneous flow in metallic glass. Acta Mater. 25, 407 1977CrossRefGoogle Scholar
5Schuh, C.A., Lund, A.C.Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 2004CrossRefGoogle Scholar
6Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G., Liu, C.T.Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 2005CrossRefGoogle Scholar
7Jiang, W.H.Atzmon, M.: The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission-electron-microscopy study. Acta Mater. 51, 4095 2003CrossRefGoogle Scholar
8Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A.Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A. 29, 1811 1998CrossRefGoogle Scholar
9Flores, K.M.Dauskardt, R.H.: Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scripta Mater. 41, 937 1999CrossRefGoogle Scholar
10Wright, W.I., Schwarz, R.B.Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 2001CrossRefGoogle Scholar
11Fan, C.Inoue, A.: Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 77, 46 2000CrossRefGoogle Scholar
12Conner, R.D., Dandliker, R.B.Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 1998CrossRefGoogle Scholar
13Kühn, U., Eckert, J., Mattern, N.Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002CrossRefGoogle Scholar
14Kim, Y.C., Na, J.H., Park, J.M., Lee, J.K.Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
15Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
16Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
17Wang, G., Liu, Y.H., Yu, P., Zhao, D.Q., Pan, M.X.Wang, W.H.: Structural evolution of shear bands in work hardenable ductile bulk metallic glass. Appl. Phys. Lett. 89, 251909 2006CrossRefGoogle Scholar
18Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
19Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H.Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 2006CrossRefGoogle Scholar
20Bei, H., Xie, S.George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 2006CrossRefGoogle Scholar
21Liu, Y.H., Wang, G., Wang, R.J.Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 2007CrossRefGoogle ScholarPubMed
22Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 2006CrossRefGoogle Scholar
23Lewandowski, J.J., Wang, W.H.Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005CrossRefGoogle Scholar
24Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
25Green, D.J., Tandon, R.Sglavo, V.M.: Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science 283, 1295 1999CrossRefGoogle ScholarPubMed
26Alpas, A.T.Embury, J.D.: Flow localization in thin layers of amorphous alloys in laminated composite structures. Scripta Metal. 22, 265 1988CrossRefGoogle Scholar
27Leng, Y.Courtney, T.H.: Fracture behavior of laminated metal-metallic glass composites. Metall. Trans. A 21, 2159 1990CrossRefGoogle Scholar
28Zhang, Y., Wang, W.H.Greer, A.L.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 2006CrossRefGoogle ScholarPubMed
29Aydiner, C.C., Ustundag, E., Clausen, B., Hanan, J.C., Winholz, R.A., Bourke, M.A.M.Peker, A.: Residual stresses in a bulk metallic glass-stainless steel composite. Mater. Sci. Eng., A 399, 107 2005CrossRefGoogle Scholar
30Chen, W.N.Ravichandran, G.: Dynamic compressive failure of a glass ceramic under lateral confinement. J. Mech. Phys. Solids 45, 1303 1997CrossRefGoogle Scholar