Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:50:21.919Z Has data issue: false hasContentIssue false

Engineering solar cells based on correlative X-ray microscopy

Published online by Cambridge University Press:  09 May 2017

Michael Stuckelberger*
Affiliation:
Defect Lab, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
Bradley West
Affiliation:
Defect Lab, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
Tara Nietzold
Affiliation:
Defect Lab, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
Barry Lai
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
Jörg M. Maser
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
Volker Rose
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
Mariana I. Bertoni
Affiliation:
Defect Lab, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In situ and operando measurement techniques combined with nanoscale resolution have proven invaluable in multiple fields of study. We argue that evaluating device performance as well as material behavior by correlative X-ray microscopy with <100 nm resolution can radically change the approach for optimizing absorbers, interfaces and full devices in solar cell research. In this article, we thoroughly discuss the measurement technique of X-ray beam induced current and point out fundamental differences between measurements of wafer-based silicon and thin-film solar cells. Based on reports of the last years, we showcase the potential that X-ray microscopy measurements have in combination with in situ and operando approaches throughout the solar cell lifecycle: from the growth of individual layers to the performance under operating conditions and degradation mechanisms. Enabled by new developments in synchrotron beamlines, the combination of high spatial resolution with high brilliance and a safe working distance allows for the insertion of measurement equipment that can pave the way for a new class of experiments. Applied to photovoltaics research, we highlight today’s opportunities and challenges in the field of nanoscale X-ray microscopy, and give an outlook on future developments.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Chris Nicklin

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Louwen, A., van Sark, W.G.J.H.M., Faaij, A.P.C., and Schropp, R.E.I.: Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat. Commun. 7, 13728 (2016).Google Scholar
Breyer, C. and Gerlach, A.: Global overview on grid-parity. Prog. Photovolt. Res. Appl. 21, 121 (2013).Google Scholar
Masson, G. and Brunisholz, M.: 2015 Snapshot of Global Photovoltaic Markets. Report IEA PVPS T1–T292016 1 (IEEE, 2016).Google Scholar
Green, M.A.: Rare materials for photovoltaics: Recent tellurium price fluctuations and availability from copper refining. Sol. Energy Mater. Sol. Cells 119, 256 (2013).Google Scholar
Jean, J., Brown, P.R., Jaffe, R.L., Buonassisi, T., and Bulovic, V.: Pathways for solar photovoltaics. Energy Environ. Sci. 8(4), 1200 (2015).Google Scholar
Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510 (1961).Google Scholar
(Jason) Yu, Z., Leilaeioun, M., and Holman, Z.: Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).Google Scholar
Beard, M.C., Luther, J.M., and Nozik, A.J.: The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 9(12), 951 (2014).Google Scholar
Sheng, X., Bower, C.A., Bonafede, S., Wilson, J.W., Fisher, B., Meitl, M., Yuen, H., Wang, S., Shen, L., Banks, A.R., Corcoran, C.J., Nuzzo, R.G., Burroughs, S., and Rogers, J.A.: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13(6), 593 (2014).Google Scholar
Bertoni, M.I., Fenning, D.P., Rinio, M., Rose, V., Holt, M., Maser, J., and Buonassisi, T.: Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells. Energy Environ. Sci. 4(10), 4252 (2011).Google Scholar
Buonassisi, T., Istratov, A.A., Marcus, M.A., Lai, B., Cai, Z., Heald, S.M., and Weber, E.R.: Engineering metal-impurity nanodefects for low-cost solar cells. Nat. Mater. 4(9), 676 (2005).Google Scholar
Morishige, A.E., Jensen, M.A., Hofstetter, J., Yen, P.X.T., Wang, C., Lai, B., Fenning, D.P., and Buonassisi, T.: Synchrotron-based investigation of transition-metal getterability in n-type multicrystalline silicon. Appl. Phys. Lett. 108, 202104 (2016).Google Scholar
Bernardis, S., Newman, B.K., Di Sabatino, M., Fakra, S.C., Bertoni, M.I., Fenning, D.P., Larsen, R.B., and Buonassisi, T.: Synchrotron-based microprobe investigation of impurities in raw quartz-bearing and carbon-bearing feedstock materials for photovoltaic applications. Prog. Photovolt. Res. Appl. 20(2), 217 (2012).CrossRefGoogle Scholar
Bertoni, M.I., Hudelson, S., Newman, B.K., Fenning, D.P., Dekkers, H.F.W., Cornagliotti, E., Zuschlag, A., Micard, G., Hahn, G., Coletti, G., Lai, B., and Buonassisi, T.: Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 19(2), 187 (2011).Google Scholar
Buonassisi, T., Heuer, M., Vyvenko, O.F., Istratov, A.A., Weber, E.R., Cai, Z., Lai, B., Ciszek, T.F., and Schindler, R.: Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects. Phys. B 340–342, 1137 (2003).Google Scholar
Buonassisi, T., Istratov, A.A., Pickett, M.D., Marcus, M.A., Hahn, G., Riepe, S., Isenberg, J., Warta, W., Willeke, G., Ciszek, T.F., and Weber, E.R.: Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved X-ray beam-induced current. Appl. Phys. Lett. 87, 044101 (2005).Google Scholar
Vyvenko, O.F., Buonassisi, T., Istratov, A.A., and Weber, E.R.: X-ray beam induced current/microprobe X-ray fluorescence: Synchrotron radiation based X-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon. J. Phys.: Condens. Matter 16(6), S141 (2004).Google Scholar
Bernardini, S., Johnston, S., West, B., Lai, B., Naerland, T., Stuckelberger, M., and Bertoni, M.I.: Nano-XRF analysis of metal impurities distribution at PL active grain boundaries during mc-silicon solar cell processing. IEEE J. Photovolt. 7(1), 244 (2017).CrossRefGoogle Scholar
Siebentritt, S.: What limits the efficiency of chalcopyrite solar cells? Sol. Energy Mater. Sol. Cells 95(6), 1471 (2011).CrossRefGoogle Scholar
Rau, U. and Werner, J.H.: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84(19), 3735 (2004).CrossRefGoogle Scholar
Gütay, L., Lienau, C., and Bauer, G.H.: Subgrain size inhomogeneities in the luminescence spectra of thin film chalcopyrites. Appl. Phys. Lett. 97(5), 52110 (2010).CrossRefGoogle Scholar
Gütay, L. and Bauer, G.H.: Non-uniformities of opto-electronic properties in Cu(In,Ga)Se2 thin films and their influence on cell performance with confocal photoluminescence. In 2009 34th IEEE Photovoltaic Specialists Conference (IEEE, Philadelphia, 2009); p. 874.CrossRefGoogle Scholar
Yun, J.S., Ho-Baillie, A., Huang, S., Woo, S.H., Heo, Y., Seidel, J., Huang, F., Cheng, Y.B., and Green, M.A.: Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6(5), 875 (2015).CrossRefGoogle ScholarPubMed
de Quilettes, D.W., Vorpahl, S.M., Stranks, S.D., Nagaoka, H., Eperon, G.E., Ziffer, M.E., Snaith, H.J., and Ginger, D.S.: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683 (2015).Google Scholar
Luo, Y., Gamliel, S., Nijem, S., Aharon, S., Holt, M., Stripe, B., Rose, V., Bertoni, M.I., Etgar, L., and Fenning, D.P.: Heterogeneous chlorine incorporation in organic–inorganic perovskite solar cells. Chem. Mater. 28(18), 6536 (2016).Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25(1), 3 (2017).Google Scholar
Crumlin, E.J., Liu, Z., Bluhm, H., Yang, W., Guo, J., and Hussain, Z.: X-ray spectroscopy of energy materials under in situ/operando conditions. J. Electron Spectrosc. Relat. Phenom. 200, 264 (2015).Google Scholar
Abou-Ras, D.: Correlative microscopy analyses of thin-film solar cells at multiple scales. Mater. Sci. Semicond. Process. (2016), in press.Google Scholar
Senoner, M. and Unger, W.E.S.: SIMS imaging of the nanoworld: Applications in science and technology. J. Anal. At. Spectrom. 27(7), 1050 (2012).Google Scholar
Merkle, A., Lechner, L., Steinbach, A., Gelb, J., Kienle, M., Phaneuf, M., and Chawla, N.: Automated correlative tomography using XRM and FIB-SEM to span length scales and modalities in 3D materials. Microsc. Anal. 28, S10 (2014).Google Scholar
Burnett, T.L., McDonald, S.A., Gholinia, A., Geurts, R., Janus, M., Slater, T., Haigh, S.J., Ornek, C., Almuaili, F., Engelberg, D.L., Thompson, G.E., and Withers, P.J.: Correlative tomography. Sci. Rep. 4, 4711 (2014).CrossRefGoogle ScholarPubMed
Sakdinawat, A. and Attwood, D.: Nanoscale X-ray imaging. Nat. Photonics 4(12), 840 (2010).Google Scholar
Hieslmair, H., Istratov, A.A., Sachdeva, R., and Weber, E.R.: New synchrotron-radiation based technique to study localized defects in silicon: “EBIC” with X-ray excitation. In 10th Work. Cryst. Silicon Sol. Cell Mater. Process. (NREL, Copper Mountain, 2000); pp. 162165.Google Scholar
Vyvenko, O.F., Buonassisi, T., Istratov, A.A., Hieslmair, H., Thompson, A.C., Schindler, R., and Weber, E.R.: X-ray beam induced current—A synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon. J. Appl. Phys. 91(6), 3614 (2002).Google Scholar
Buonassisi, T., Istratov, A.A., Pickett, M.D., Marcus, M.A., Hahn, G., Riepe, S., Isenberg, J., Warta, W., Willeke, G., Ciszek, T.F., and Weber, E.R.: Synchrotron-based spectrally-resolved X-ray beam induced current: a technique to quantify the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon. In 15th Work. Cryst. Silicon Sol. Cells Modul. Mater. Process. (NREL, Vail, 2005); pp. 141144.Google Scholar
Istratov, A.A., Buonassisi, T., Weber, E.R., Marcus, M.A., and Ciszek, T.F.: Dependence of precipitation behavior of Cu and Ni in CZ multicrystalline silicon on cooling conditions. In 14th Work. Cryst. Silicon Sol. Cells Modul. (NREL, Winter Park, 2004); pp. 15.Google Scholar
Buonassisi, T., Istratov, A.A., Marcus, M.A., Peters, S., Ballif, C., Heuer, M., Ciszek, T.F., Cai, Z., Lai, B., Schindler, R., and Weber, E.R.: Synchrotron-based investigations into metallic impurity distribution and defect engineering in multicrystalline silicon via thermal treatments. In 2005 30th IEEE Photovoltaic Specialists Conference (IEEE, Lake Buena Vista, 2005); pp. 10271030.Google Scholar
Rinio, M., Ballif, C., Buonassisi, T., and Borchert, D.: Defects in the deteriorated border layer of block-cast multicrystalline silicon ingots. In 19th Eur. Photovolt. Sol. Energy Conf. Exhib. (WIP, Paris, 2004); pp. 762765.Google Scholar
Buonassisi, T., Vyvenko, O.F., Istratov, A.A., Weber, E.R., Hahn, G., Sontag, D., Rakotoniaina, J.P., Breitenstein, O., Isenberg, J., and Schindler, R.: Observation of transition metals at shunt locations in multicrystalline silicon solar cells. J. Appl. Phys. 95(3), 1556 (2004).CrossRefGoogle Scholar
Trushin, M., Seifert, W., Vyvenko, O., Bauer, J., Martinez-Criado, G., Salome, M., and Kittler, M.: XBIC/μ-XRF/μ-XAS analysis of metals precipitation in block-cast solar silicon. Nucl. Instrum. Methods Phys. Res., Sect. B 268(3–4), 254 (2010).Google Scholar
Trushin, M., Vyvenko, O., Seifert, W., Kittler, M., Zizak, I., Erko, A., Seibt, M., and Rudolf, C.: Combined XBIC/μ-XRF/μ-XAS/DLTS investigation of chemical character and electrical properties of Cu and Ni precipitates in silicon. Phys. Status Solidi C 6(8), 1868 (2009).Google Scholar
Lafford, T.A., Villanova, J., Plassat, N., Dubois, S., and Camel, D.: Synchrotron X-ray imaging applied to solar photovoltaic silicon. J. Phys.: Conf. Ser. 425(19), 192019 (2013).Google Scholar
Buonassisi, T., Vyvenko, O.F., Istratov, A.A., Weber, E.R., Hahn, G., Sontag, D., Rakotoniaina, J-P., Breitenstein, O., Isenberg, J., and Schindler, R.: Assessing the role of transition metals in shunting mechanisms using synchrotron-based techniques. In 3rd IEEE World Conf. Photovolt. Energy Convers. (WCPEC-3 Organizing Committee, Osaka, 2003); pp. 11201123.Google Scholar
Seifert, W., Vyvenko, O.F., Arguirov, T., Erko, A., Kittler, M., Rudolf, C., Salome, M., Trushin, M., and Zizak, I.: Synchrotron microscopy and spectroscopy for analysis of crystal defects in silicon. Phys. Status Solidi 6(3), 765 (2009).Google Scholar
Seifert, W., Vyvenko, O., Arguirov, T., Kittler, M., Salome, M., Seibt, M., and Trushin, M.: Synchrotron-based investigation of iron precipitation in multicrystalline silicon. Superlattices Microstruct. 45(4–5), 168 (2009).Google Scholar
Villanova, J., Segura-Ruiz, J., Lafford, T., and Martinez-Criado, G.: Synchrotron microanalysis techniques applied to potential photovoltaic materials. J. Synchrotron Radiat. 19(4), 521 (2012).Google Scholar
Vyvenko, O.F., Buonassisi, T., Istratov, A.A., Weber, E.R., Kittler, M., and Seifert, W.: Application of synchrotron-radiation-based X-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations. J. Phys.: Condens. Matter 14, 13079 (2002).Google Scholar
Fahrtdinov, R.R., Feklisova, O.V., Grigoriev, M.V., Irzhak, D.V., Roshchupkin, D.V., and Yakimov, E.B.: XBIC investigation of the grain boundaries in multicrystalline Si on the laboratory X-ray source. Solid State Phenom. 178–179, 226 (2011).CrossRefGoogle Scholar
Grigoriev, M.V., Fakhrtdinov, R.R., Irzhak, D.V., Roshchupkin, D.V., and Yakimov, E.B.: XBIC using a laboratory X-ray source. Bull. Russ. Acad. Sci.: Phys. 77(1), 21 (2013).Google Scholar
Fakhrtdinov, R.R., Grigoriev, M.V., and Pavlov, V.N.: Optimization of the scanning process in the X-ray-beam-induced current method. J. Surf. Invest. 7(4), 685 (2013).CrossRefGoogle Scholar
Grigoriev, M.V., Roshchupkin, D.V., Fakhrtdinov, R.R., and Yakimov, E.B.: Studying stacking faults in SiC by the XBIC method using a laboratory X-ray source. J. Surf. Invest. 8(1), 155 (2014).Google Scholar
Orlov, V.I., Feklisova, O.V., and Yakimov, E.B.: A comparison of EBIC, LBIC and XBIC methods as tools for multicrystalline Si characterization. Solid State Phenom. 205–206, 142 (2014).Google Scholar
Shabel’nikova, Y.L. and Yakimov, E.B.: Rate of generation of nonequilibrium charge carriers by a focused X-ray beam. J. Surf. Invest: X-Ray, Synchrotron Neutron Tech. 7(5), 859 (2013).Google Scholar
Shabelnikova, Y. and Yakimov, E.: Diffusion length and grain boundary recombination activity determination by means of induced current methods. Superlattices Microstruct. 99, 108 (2016).Google Scholar
Shabel’nikova, Y.L. and Yakimov, E.B.: Comparison between the EBIC and XBIC contrasts of dislocations and grain boundaries. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6(6), 894 (2012).Google Scholar
Shabel’nikova, Y.L., Yakimov, E.B., Grigor’ev, M.V., Fahrtdinov, R.R., Bushuev, V.A., and Bushuev, A.: Calculating the extended defect contrast for the X-ray-beam-induced current method. Tech. Phys. Lett. 38(10), 913 (2012).CrossRefGoogle Scholar
Winarski, R.P., Holt, M.V., Rose, V., Fuesz, P., Carbaugh, D., Benson, C., Shu, D., Kline, D., Brian Stephenson, G., McNulty, I., and Maser, J.: A hard X-ray nanoprobe beamline for nanoscale microscopy. J. Synchrotron Radiat. 19(6), 1056 (2012).Google Scholar
West, B., Husein, S., Stuckelberger, M., Lai, B., Maser, J., Stripe, B., Rose, V., Guthrey, H., Al-jassim, M., and Bertoni, M.: Correlation between grain composition and charge carrier collection in Cu(In,Ga)Se2 solar cells. In 2015 42nd IEEE Photovoltaic Specialists Conference (IEEE, New Orleans, 2015); p. 1.Google Scholar
West, B., Stuckelberger, M., Guthrey, H., Chen, L., Lai, B., Maser, J., Dynes, J.J., Shafarman, W., Al-Jassim, M., and Bertoni, M.I.: Synchrotron X-ray characterization of alkali elements at grain boundaries in Cu(In,Ga)Se2 solar cells. In 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 3134.Google Scholar
West, B., Stuckelberger, M., Jeffries, A., Gangam, S., Lai, B., Stripe, B., Maser, J., Rose, V., Vogt, S., and Bertoni, M.: X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study. J. Synchrotron Radiat. 24, 288 (2017).Google Scholar
West, B.M., Stuckelberger, M., Guthrey, H., Chen, L., Lai, B., Maser, J., Rose, V., Shafarman, W., Al-Jassim, M., and Bertoni, M.I.: Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells. Nano Energy 32, 488 (2017).Google Scholar
Stuckelberger, M., West, B., Husein, S., Guthrey, H., Maser, J., Al-Jassim, M., Stripe, B., Rose, V., and Bertoni, M.I.: Latest developments in the X-ray based characterization of thin-film solar cells. In 2015 42nd IEEE Photovoltaic Specialists Conference (IEEE, New Orleans, 2015); p. 16.Google Scholar
Watts, B., Queen, D., Kilcoyne, A.L.D., Tyliszczak, T., Hellman, F., and Ade, H.: Soft X-ray beam induced current technique. In 9th International Conference on X-ray Microscopy (IOP, Zurich, 2009); p. 12023.Google Scholar
Stuckelberger, M., Nietzold, T., Hall, G.N., West, B., Werner, J., Ballif, C., Rose, V., Fenning, D.P., and Bertoni, M.I.: Elemental distribution and charge collection at the nanoscale on perovskite solar cells. 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 1191.Google Scholar
Stuckelberger, M., Nietzold, T., Hall, G.N., West, B., Werner, J., Niesen, B., Ballif, C., Rose, V., Fenning, D.P., and Bertoni, M.I.: Charge collection in hybrid perovskite solar cells: Relation to the nanoscale elemental distribution. IEEE J. Photovolt. 7(2), 590 (2017).CrossRefGoogle Scholar
Hofstetter, J., Fenning, D.P., Bertoni, M.I., Lelievre, J.F., Del Canizo, C., and Buonassisi, T.: Impurity-to-efficiency simulator: Predictive simulation of silicon solar cell performance based on iron content and distribution. Prog. Photovolt. Res. Appl. 19(4), 487 (2011).Google Scholar
Pinard, P.T., Demers, H., Salvat, F., and Gauvin, R.: PyPenelope. Available at: http://pypenelope.sourceforge.net/ (accessed October 4, 2016).Google Scholar
Salvat, F., Fernandez-Varea, J.M., Acosta, E., and Sempau, J.: PENELOPE, a code system for Monte Carlo simulation of electron and photon transport. Available at: http://www.oecd-nea.org/tools/abstract/detail/nea-1525 (accessed October 4, 2016).Google Scholar
Stuckelberger, M.E., West, B., and Bertoni, M.I.: X-ray beam induced current: Measuring electrical properties of solar cells at multiple length scales. Manuscr. Prep. (2017).Google Scholar
Chakraborty, R., Serdy, J., West, B., Stuckelberger, M., Lai, B., Maser, J., Bertoni, M.I., Culpepper, M.L., and Buonassisi, T.: Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy. Rev. Sci. Instrum. 86(11), 113705 (2015).Google Scholar
Emery, K.: Photovoltaic calibrations at the National Renewable Energy Laboratory and uncertainty analysis following the ISO 17025 guidelines. Technical Report, NREL, 2016.Google Scholar
Pianezzi, F., Chirilă, A., Plösch, P., Seyrling, S., Buecheler, B., Kranz, L., Fella, C., and Tiwari, A.N.: Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovolt. Res. Appl. 20, 253 (2012).Google Scholar
Gottwald, A., Kroth, U., Krumrey, M., Richter, M., Scholze, F., and Ulm, G.: The PTB high-accuracy spectral responsivity scale in the VUV and X-ray range. Metrologia 43(2), S125 (2006).CrossRefGoogle Scholar
Klein, C.A.: Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39(4), 2029 (1968).Google Scholar
Yun, W., Lai, B., Cai, Z., Maser, J., Legnini, D., Gluskin, E., Chen, Z., Krasnoperova, A.A., Vladimirsky, Y., Cerrina, F., Di Fabrizio, E., and Gentili, M.: Nanometer focusing of hard X-rays by phase zone plates. Rev. Sci. Instrum. 70(5), 2238 (1999).Google Scholar
Chen, S., Deng, J., Yuan, Y., Flachenecker, C., Mak, R., Hornberger, B., Jin, Q., Shu, D., Lai, B., Maser, J., Roehrig, C., Paunesku, T., Gleber, S.C., Vine, D.J., Finney, L., Vonosinski, J., Bolbat, M., Spink, I., Chen, Z., Steele, J., Trapp, D., Irwin, J., Feser, M., Snyder, E., Brister, K., Jacobsen, C., Woloschak, G., and Vogt, S.: The bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 21(1), 66 (2014).Google Scholar
West, B., Stuckelberger, M., Chen, L., Lovelett, R., Lai, B., Maser, J., and Bertoni, M.I.: Growth of Cu(In,Ga)(S,Se)2 films: Unravelling the mysteries by in situ X-ray imaging. In 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 1.Google Scholar
West, B., Guthrey, H., Chen, L., Jeffries, A., Bernardini, S., Lai, B., Maser, J., Shafarman, W., Al-Jasim, M., and Bertoni, M.: Electrical and compositional characterization of gallium grading in Cu(In,Ga)Se2 solar cells. In 2014 41st IEEE Photovoltaic Specialists Conference (IEEE, Denver, 2014); p. 1726.CrossRefGoogle Scholar
Vogt, S.: MAPS: A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV 104, 635 (2003).Google Scholar
National Institute of Standards and Technology (NIST). Available at: https://www.nist.gov/ (accessed February 20, 2017).Google Scholar
AXO Dresden. Available at: http://www.axo-dresden.de/(accessed February 20, 2017).Google Scholar
Nietzold, T., West, B., Stuckelberger, M., Lai, B., Vogt, S., and Bertoni, M.I.: Quantifying X-ray fluorescence data using MAPS. J. Visual Experiments (2017), in preparation.Google Scholar
Mantler, M.: X-ray fluorescence analysis of multiple-layer films. Anal. Chem. Acta 188, 25 (1986).Google Scholar
de Boer, D.K.G.: Calculation of X-ray fluorescence intensities from bulk and multilayer samples. X-Ray Spectrom. 19(3), 145 (1990).Google Scholar
Ravel, B. and Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537 (2005).Google Scholar
Ravel, B.: Demeter Software Package. Available at: https://bruceravel.github.io/demeter/(accessed February 25, 2017).Google Scholar
Tsukahara, M., Mitrovic, S., Gajdosik, V., Margaritondo, G., Pournin, L., Ramaioli, M., Sage, D., Hwu, Y., Unser, M., and Liebling, T.M.: Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass. Phys. Rev. E 77(6), 61306 (2008).Google Scholar
Meyer, J.W.: Determination of iron, calcium, and silicon in calcium silicates by X-ray fluorescence. Anal. Chem. 33(6), 692 (1961).Google Scholar
McHugo, S.A., Thompson, A.C., Flink, C., Weber, E.R., Lamble, G., Gunion, B., MacDowell, A., Celestre, R., Padmore, H.A., and Hussain, Z.: Synchrotron-based impurity mapping. J. Cryst. Growth 210(1–3), 395 (2000).Google Scholar
McHugo, S.A., Thompson, A.C., Mohammed, A., Lamble, G., Périchaud, I., Martinuzzi, S., Werner, M., Rinio, M., Koch, W., Hoefs, H-U., and Haessler, C.: Nanometer-scale metal precipitates in multicrystalline silicon solar cells. J. Appl. Phys. 89(8), 4282 (2001).Google Scholar
Istratov, A.A., Hieslmair, H., and Weber, E.R.: Iron contamination in silicon technology. Appl. Phys. A 70, 489 (2000).Google Scholar
Buonassisi, T., Istratov, A.A., Heuer, M., Marcus, M.A., Jonczyk, R., Isenberg, J., Lai, B., Cai, Z., Heald, S., Warta, W., Schindler, R., Willeke, G., and Weber, E.R.: Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells. J. Appl. Phys. 97(7), 74901 (2005).Google Scholar
Buonassisi, T., Marcus, M.A., Istratov, A., Heuer, M., Ciszek, T.F., Lai, B., Cai, Z., and Weber, E.R.: Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material. J. Appl. Phys. 97(6), 63503 (2005).Google Scholar
Buonassisi, T., Istratov, A.A., Pickett, M.D., Marcus, M.A., Ciszek, T.F., and Weber, E.R.: Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration. Appl. Phys. Lett. 89(4), 042102 (2006).Google Scholar
Buonassisi, T., Istratov, A.A., Marcus, M.A., Heuer, M., Pickett, M.D., Lai, B., Cai, Z., Heald, S.M., and Weber, E.R.: Local measurements of diffusion length and chemical character of metal clusters in multicrystalline silicon. Solid State Phenom. 108–109, 577 (2005).Google Scholar
Istratov, A.A., Buonassisi, T., McDonald, R.J., Smith, A.R., Schindler, R., Rand, J.A., Kalejs, J.P., and Weber, E.R.: Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. J. Appl. Phys. 94(10), 6552 (2003).CrossRefGoogle Scholar
Buonassisi, T., Istratov, A.A., Pickett, M.D., Rakotoniaina, J.P., Breitenstein, O., Marcus, M.A., Heald, S.M., and Weber, E.R.: Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material. J. Cryst. Growth 287(2), 402 (2006).Google Scholar
Buonassisi, T., Istratov, A.A., Peters, S., Ballif, C., Isenberg, J., Riepe, S., Warta, W., Schindler, R., Willeke, G., Cai, Z., Lai, B., and Weber, E.R.: Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells. Appl. Phys. Lett. 87, 121918 (2005).Google Scholar
Buonassisi, T., Istratov, A.A., Pickett, M.D., Heuer, M., Kalejs, J.P., Hahn, G., Marcus, M.A., Lai, B., Cai, Z., Heald, S.M., Ciszek, T.F., Clark, R.F., Cunningham, D.W., Gabor, A.M., Jonczyk, R., Narayanan, S., Sauar, E., and Weber, E.R.: Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovolt. Res. Appl. 14(6), 512 (2006).Google Scholar
Buonassisi, T., Heuer, M., Istratov, A.A., Pickett, M.D., Marcus, M.A., Lai, B., Cai, Z., Heald, S.M., and Weber, E.R.: Transition metal co-precipitation mechanisms in silicon. Acta Mater. 55(18), 6119 (2007).CrossRefGoogle Scholar
Hudelson, S., Newman, B.K., Bernardis, S., Fenning, D.P., Bertoni, M.I., Marcus, M.A., Fakra, S.C., Lai, B., and Buonassisi, T.: Retrograde melting and internal liquid gettering in silicon. Adv. Mater. 22(35), 3948 (2010).Google Scholar
Fenning, D.P., Newman, B.K., Bertoni, M.I., Hudelson, S., Bernardis, S., Marcus, M.A., Fakra, S.C., and Buonassisi, T.: Local melting in silicon driven by retrograde solubility. Acta Mater. 61(12), 4320 (2013).Google Scholar
Fenning, D.P., Hofstetter, J., Bertoni, M.I., Hudelson, S., Rinio, M., Lelievre, J.F., Lai, B., Del Canizo, C., and Buonassisi, T.: Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling. Appl. Phys. Lett. 98, 162103 (2011).Google Scholar
Fenning, D.P., Hofstetter, J., Morishige, A.E., Powell, D.M., Zuschlag, A., Hahn, G., and Buonassisi, T.: Darwin at high temperature: Advancing solar cell material design using defect kinetics simulations and evolutionary optimization. Adv. Energy Mater. 4(13), 1 (2014).Google Scholar
Haarahiltunen, A., Savin, H., Yli-Koski, M., Talvitie, H., Asghar, M.I., and Sinkkonen, J.: As-grown iron precipitates and gettering in multicrystalline silicon. Mater. Sci. Eng., B 159–160, 248 (2009).Google Scholar
Fenning, D.P., Hofstetter, J., Bertoni, M.I., Coletti, G., Lai, B., Del Canizo, C., and Buonassisi, T.: Precipitated iron: A limit on gettering efficacy in multicrystalline silicon. J. Appl. Phys. 113, 044521 (2013).Google Scholar
Fenning, D.P., Zuschlag, A.S., Bertoni, M.I., Lai, B., Hahn, G., and Buonassisi, T.: Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion. J. Appl. Phys. 113, 214504 (2013).Google Scholar
Hofstetter, J., Fenning, D.P., Powell, D.M., Morishige, A.E., Wagner, H., and Buonassisi, T.: Sorting metrics for customized phosphorus diffusion gettering. IEEE J. Photovolt. 4(6), 1421 (2014).Google Scholar
Jensen, M.A., Hofstetter, J., Morishige, A.E., Coletti, G., Lai, B., Fenning, D.P., and Buonassisi, T.: Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells. Appl. Phys. Lett. 106(20), 202104 (2015).Google Scholar
Kim, W.K., Payzant, E.A., Yoon, S., and Anderson, T.J.: In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction. J. Cryst. Growth 294(2), 231 (2006).Google Scholar
Mainz, R. and Klenk, R.: In situ analysis of elemental depth distributions in thin films by combined evaluation of synchrotron X-ray fluorescence and diffraction. J. Appl. Phys. 109, 123515 (2011).CrossRefGoogle Scholar
Berg, D.M., Cheng, F., and Shafarman, W.N.: H2S reaction of Se-capped metallic precursors to form Cu(In,Ga)(S,Se)2 absorber layers. 2014 41st IEEE Photovoltaic Specialists Conference (IEEE, Denver, 2014); p. 323.Google Scholar
Chen, L., Lee, J., and Shafarman, W.N.: The comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 thin films deposited by three-stage coevaporation. IEEE J. Photovolt. 4(1), 447 (2014).Google Scholar
Morishige, A.E., Laine, H.S., Jensen, M.A., Yen, P.X.T., Looney, E.E., Vogt, S., Lai, B., Savin, H., and Buonassisi, T.: Accelerating synchrotron-based characterization of solar materials: Development of flyscan capability. 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 2006.CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B., and Krebs, F.C.: Stability of polymer solar cells. Adv. Mater. 24(5), 580 (2012).Google Scholar
Tanenbaum, D.M., Hermenau, M., Voroshazi, E., Lloyd, M.T., Galagan, Y., Zimmermann, B., Hosel, M., Dam, H.F., Jørgensen, M., Gevorgyan, S.A., Kudret, S., Maes, W., Lutsen, L., Vanderzande, D., Wurfel, U., Andriessen, R., Rosch, R., Hoppe, H., Teran-Escobar, G., Lira-Cantu, M., Rivaton, A., Uzunoglu, G.Y., Germack, D., Andreasen, B., Madsen, M.V., Norrman, K., and Krebs, F.C.: The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Adv. 2, 882 (2012).Google Scholar
Collins, B.A., Tumbleston, J.R., and Ade, H.: Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: Toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2(24), 3135 (2011).Google Scholar
Collins, B.A., Cochran, J.E., Yan, H., Gann, E., Hub, C., Fink, R., Wang, C., Schuettfort, T., McNeill, C.R., Chabinyc, M.L., and Ade, H.: Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11(6), 536 (2012).Google Scholar
Nikiforov, M.P., Lai, B., Chen, W., Chen, S., Schaller, R.D., Strzalka, J., Maser, J., and Darling, S.B.: Detection and role of trace impurities in high-performance organic solar cells. Energy Environ. Sci. 6(5), 1513 (2013).Google Scholar
Agostinelli, T., Lilliu, S., Labram, J.G., Campoy-Quiles, M., Hampton, M., Pires, E., Rawle, J., Bikondoa, O., Bradley, D.D.C., Anthopoulos, T.D., Nelson, J., and MacDonald, J.E.: Real-time investigation of crystallization and phase-segregation dynamics in P3HT:PCBM solar cells during thermal annealing. Adv. Funct. Mater. 21(9), 1701 (2011).Google Scholar
Lilliu, S., Agostinelli, T., Pires, E., Hampton, M., Nelson, J., and MacDonald, J.E.: Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions. Macromolecules 44(8), 2725 (2011).Google Scholar
Beiley, Z.M., Hoke, E.T., Noriega, R., Dacuña, J., Burkhard, G.F., Bartelt, J.A., Salleo, A., Toney, M.F., and McGehee, M.D.: Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1(5), 954 (2011).Google Scholar
Bartelt, J.A., Beiley, Z.M., Hoke, E.T., Mateker, W.R., Douglas, J.D., Collins, B.A., Tumbleston, J.R., Graham, K.R., Amassian, A., Ade, H., Fréchet, J.M.J., Toney, M.F., and McGhee, M.D.: The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3(3), 364 (2013).Google Scholar
Rivnay, J., Steyrleuthner, R., Jimison, L.H., Casadei, A., Chen, Z., Toney, M.F., Facchetti, A., Neher, D., and Salleo, A.: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44(13), 5246 (2011).Google Scholar
Qian, S., Misra, S., Lu, J., Yu, Z., Yu, L., Xu, J., Wang, J., Xu, L., Shi, Y., Chen, K., and Cabarrocas, P.R.i.: Full potential of radial junction Si thin film solar cells with advanced junction materials and design. Appl. Phys. Lett. 107(4), 43902 (2015).Google Scholar
Im, J-H., Luo, J., Franckevicius, M., Pellet, N., Gao, P., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M., and Park, N-G.: Nanowire perovskite solar cell. Nano Lett. 15(3), 2120 (2015).Google Scholar
Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Aberg, I., Magnusson, M.H., Siefer, G., Fuss-Kailuweit, P., Dimroth, F., Witzigmann, B., Xu, H.Q., Samuelson, L., Deppert, K., Borgström, M.T., Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., O’Regan, B., Grätzel, M., Polman, A., Atwater, H.A., Mårtensson, T., Colombo, C., Heiβ, M., Grätzel, M., Fontcuberta i Morral, A., Wang, J.F., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M., Borgström, M.T., Garnett, E.C., Brongersma, M.L., Cui, Y., McGehee, M.D., Goto, H., Kupec, J., Stoop, R.L., Witzigmann, B., Hu, L., Chen, G., Anttu, N., Xu, H.Q., Kelzenberg, M.D., Garnett, E., Yang, P.D., Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Borgström, M.T., Mårtensson, T., Anttu, N., Xu, H.Q., Wu, P.M., Anttu, N., Xu, H.Q., Samuelson, L., Pistol, M.E., Münch, S., Joyce, H.J., Mishra, A., van Weert, M.H.M., Yella, A., Ip, A.H., Popov, E., Nevière, M., Gralak, B., Tayeb, G., Jellison, J.G.E., and Modine, F.A.: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123), 1057 (2013).Google Scholar
Parkinson, P., Lee, Y.H., Fu, L., Breuer, S., Tan, H.H., and Jagadish, C.: Three-dimensional in situ photocurrent mapping for nanowire photovoltaics. Nano Lett. 13(4), 1405 (2013).Google Scholar
Krogstrup, P., Jørgensen, H.I., Heiss, M., Demichel, O., Holm, J.V., Aagesen, M., Nygard, J., and Fontcuberta i Morral, A.: Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306 (2013).Google Scholar
Segura-Ruiz, J., Martínez-Criado, G., Denker, C., Malindretos, J., and Rizzi, A.: Phase separation in single In x Ga1−x N nanowires revealed through a hard X-ray synchrotron nanoprobe. Nano Lett. 14, 1300 (2014).Google Scholar
Segura-Ruiz, J., Martínez-Criado, G., Chu, M.H., Denker, C., Malindretos, J., and Rizzi, A.: Synchrotron nanoimaging of single In-rich InGaN nanowires. J. Appl. Phys. 113, 136511 (2013).Google Scholar
Martínez-Criado, G., Segura-Ruiz, J., Alén, B., Eymery, J., Rogalev, A., Tucoulou, R., and Homs, A.: Exploring single semiconductor nanowires with a multimodal hard X-ray nanoprobe. Adv. Mater. 26(46), 7873 (2014).Google Scholar
Martínez-Criado, G., Homs, A., Alén, B., Sans, J.A., Segura-Ruiz, J., Molina-Sanchez, A., Susini, J., Yoo, J., and Yi, G.C.: Probing quantum confinement within single core-multishell nanowires. Nano Lett. 12(11), 5829 (2012).Google Scholar
Chu, M.H., Martínez-Criado, G., Segura-Ruiz, J., Geburt, S., and Ronning, C.: Local lattice distortions in single Co-implanted ZnO nanowires. Appl. Phys. Lett. 103, 141911 (2013).Google Scholar
Chu, M.H., Martínez-Criado, G., Segura-Ruiz, J., Geburt, S., and Ronning, C.: Structural order in single Co-implanted ZnO nanowires. Phys. Status Solidi 211(2), 483 (2014).Google Scholar
Rosenberg, R.A., Shenoy, G.K., Heigl, F., Lee, S-T., Kim, P-S.G., Zhou, X-T., and Sham, T.K.: Determination of the local structure of luminescent sites in ZnS nanowires using x-ray excited optical luminescence. Appl. Phys. Lett. 87, 253105 (2005).Google Scholar
Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V.L., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., and McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158 (2014).Google Scholar
Werner, J., Dubuis, G., Walter, A., Löper, P., Moon, S-J., Nicolay, S., Morales-Masis, M., De Wolf, S., Niesen, B., and Ballif, C.: Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407 (2015).Google Scholar
Stuckelberger, M., Nietzold, T., Hall, G., West, B., Meng, X., Werner, J., Niesen, B., Lai, B., Maser, J., Rose, V., Ballif, C., and Bertoni, M.I.: Low degradation of metal-halide perovskite layers under x-ray irradiation enables synchrotron-based characterization methods. Presented at the MRS Spring Meet. (MRS, Phoenix, 2016).Google Scholar
Leblebici, S.Y., Leppert, L., Li, Y., Reyes-Lillo, S.E., Wickenburg, S., Wong, E., Lee, J., Melli, M., Ziegler, D., Angell, D.K., Ogletree, D.F., Ashby, P.D., Toma, F.M., Neaton, J.B., Sharp, I.D., and Weber-Bargioni, A.: Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1(8), 16093 (2016).Google Scholar
Nazaretski, E., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., and Chu, Y.S.: Development and characterization of monolithic multilayer Laue lens nanofocusing optics. Appl. Phys. Lett. 108, 261102 (2016).Google Scholar
Chu, Y., Yan, H., Nazaretski, E., Kalbfleisch, S., Huang, X., Lauer, K., and Bouet, N.: NSLS HXN News: Hard X-ray nanoprobe facility at the national synchroton light source II. SPIE Newsroom, August 31, 2015.Google Scholar
Maser, J., Lai, B., Buonassisi, T., Cai, Z., Chen, S., Finney, L., Gleber, S-C., Jacobsen, C., Preissner, C., Roehrig, C., Rose, V., Shu, D., Vine, D., and Vogt, S.: A next-generation hard X-ray nanoprobe beamline for in situ studies of energy materials and devices. Metall. Mater. Trans. A 45(1), 85 (2014).Google Scholar
Cummings, M.L., Chien, T.Y., Preissner, C., Madhavan, V., Diesing, D., Bode, M., Freeland, J.W., and Rose, V.: Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast. Ultramicroscopy 112, 22 (2012).Google Scholar
Shirato, N., Cummings, M., Kersell, H., Li, Y., Stripe, B., Rosenmann, D., Hla, S.W., and Rose, V.: Elemental fingerprinting of materials with sensitivity at the atomic limit. Nano Lett. 14(11), 6499 (2014).Google Scholar
Yang, W., Huang, X., Harder, R., Clark, J.N., Robinson, I.K., and Mao, H.: Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat. Commun. 4, 1680 (2013).Google Scholar
Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., and Pfeiffer, F.: Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436 (2010).Google Scholar
Ulvestad, A., Singer, A., Clark, J.N., Cho, H.M., Kim, J.W., Harder, R., Maser, J., Meng, Y.S., and Shpyrko, O.G.: Topological defect dynamics in operando battery nanoparticles. Science 348(6241), 1344 (2015).Google Scholar
Ulvestad, A., Welland, M.J., Cha, W., Liu, Y., Kim, J.W., Harder, R., Maxey, E., Clark, J.N., Highland, M.J., You, H., Zapol, P., Hruszkewycz, S.O., and Stephenson, G.B.: Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation. Nat. Mater. 4842, 1 (2017).Google Scholar
Liu, Y., Lopes, P.P., Cha, W., Harder, R., Maser, J., Maxey, E., Highland, M.J., Markovic, N.M., Hruszkewycz, S.O., Stephenson, G.B., You, H., and Ulvestad, A.: Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging. Nano Lett. 17(3), 1595 (2017).Google Scholar
Einfeld, D.: Multi-bend achromat lattices for storage ring light sources. Synchrotron Radiat. News 27(6), 4 (2014).Google Scholar
Alig, R.C., Bloom, S., and Struck, C.W.: Scattering by ionization and phonon emission in semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 22(12), 5565 (1980).Google Scholar
Walsh, A. and Butler, K.T.: Prediction of electron energies in metal oxides. Acc. Chem. Res. 47(2), 364 (2014).Google Scholar
Kasap, S.O. and Rowlands, J.A.: Direct-conversion flat-panel X-ray image sensors for digital radiography. Proc. IEEE 90(4), 591 (2002).Google Scholar
Emara, J., Schnier, T., Pourdavoud, N., Riedl, T., Meerholz, K., and Olthof, S.: Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites. Adv. Mater. 28(3), 553 (2016).Google Scholar
Grant, J., Cunningham, W., Blue, A., O’Shea, V., Vaitkus, J., Baubas, E., and Rahman, M.: Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res., Sect. A 546, 213 (2005).Google Scholar
Owens, A. and Peacock, A.: Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 531, 18 (2004).Google Scholar
Awadalla, S.: Solid-state Radiation Detectors: Technology and Applications (CRC Press, Boca Raton, 2015).Google Scholar
Berger, L.I.: Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2015).Google Scholar
Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J., and Boatner, L.A.: Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1 (2003).Google Scholar
Semonin, O.E., Luther, J.M., Choi, S., Chen, H-Y., Gao, J., Nozik, A.J., and Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530 (2011).Google Scholar
Elam, W.T., Ravel, B.D., and Sieber, J.R.: A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 63(2), 121 (2002).Google Scholar
Henke, B.L.: X-ray interactions with matter. Available at: http://henke.lbl.gov/optical_constants/ (accessed February 25, 2017).Google Scholar
Solé, V.A., Papillon, E., Cotte, M., Walter, P., and Susini, J.: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta, Part B 62(1), 63 (2007).Google Scholar
PyMCA. Available at: http://pymca.sourceforge.net/index.html (accessed February 26, 2017).Google Scholar