Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T20:50:18.888Z Has data issue: false hasContentIssue false

Electrospun SrTiO3 nanofibers for photocatalytic hydrogen generation

Published online by Cambridge University Press:  23 September 2013

Lea Macaraig
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, 606-8501 Kyoto, Japan
Surawut Chuangchote
Affiliation:
The Joint Graduate School of Energy and Environment, King Mongkut University of Technology Thonburi, Bangmod, Tungkru, 10140 Bangkok, Thailand
Takashi Sagawa*
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, 606-8501 Kyoto, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Homogenous strontium titanate (SrTiO3) nanofibers were prepared via the electrospinning of precursor solutions containing both strontium and titanium salts. Photocatalytic activities of these SrTiO3 nanofibers for hydrogen generation from water were examined and compared to that of SrTiO3 nanoparticles. The nanofibers calcined at 700 °C showed the highest photocatalytic activity of 167 μmol/h/g among the SrTiO3 samples tested. The high activity was attributed to the ideal stoichiometric ratio of Ti/Sr, small crystallite size, high crystallinity, mesoporous structure, large surface area, and appropriate energy gap. These were confirmed through field emission scanning electron microscopic with energy dispersive spectroscopic observations, x-ray diffraction patterns, N2 gas absorption–desorption isotherm measurements, photoelectron yield spectroscopy in air, and UV-visible spectrophotometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Crabtree, G.W., Dresselhaus, M.S., and Buchanan, M.V.: The hydrogen economy. Phys. Today 57(12), 39 (2004).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238(5358), 37 (1972).CrossRefGoogle Scholar
T Lam, R.U.E., de Haart, L.G.J., Wiersma, A.W., Blasse, G., Tinnemans, A.H.A., and Mackor, A.: The sensitization of SrTiO3 photoanodes by doping with various transition metal ions. Mater. Res. Bull. 16(12), 1593 (1981).CrossRefGoogle Scholar
Zhou, X., Shi, J., and Li, C.: Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (metal = Mn, Fe, and Co). J. Phys. Chem. A 115(16), 8305 (2011).Google Scholar
Ashokkumar, M.: An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy 23(6), 427 (1998).CrossRefGoogle Scholar
Kudo, A., Tanaka, A., Domen, K., and Onishi, T.: The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. J. Catal. 111(2), 296 (1988).CrossRefGoogle Scholar
Puangpetch, T., Sreethawong, T., and Chavadej, S.: Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading. Int. J. Hydrogen Energy 35(13), 6531 (2010).CrossRefGoogle Scholar
Liu, J.W., Chen, G., Li, Z.H., and Zhang, Z.G.: Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3 . J. Solid State Chem. 179(12), 3704 (2006).CrossRefGoogle Scholar
Domen, K., Naito, S., Onishi, T., and Tamaru, K.: Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst. Chem. Phys. Lett. 92(4), 433 (1982).CrossRefGoogle Scholar
Domen, K., Kudo, A., Onishi, T., Kosugi, N., and Kuroda, H.: Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J. Phys. Chem. 90(2), 292 (1986).CrossRefGoogle Scholar
Puangpetch, T., Sreethawong, T., Yoshikawa, S., and Chavadej, S.: Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J. Mol. Catal. A: Chem. 312(1–2), 97 (2009).CrossRefGoogle Scholar
Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S.: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1(5), 1140 (2009).CrossRefGoogle ScholarPubMed
Macaraig, L., Chuangchote, S., and Sagawa, T.: Fabrication of SrTiO3 nanofibers for hydrogen production. Mater. Res. Soc. Symp. Proc. 1408, (2012).CrossRefGoogle Scholar
Cao, T., Li, Y., Wang, C., Shao, C., and Liu, Y.: A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6), 2946 (2011).CrossRefGoogle ScholarPubMed
Macaraig, L., Chuangchote, S., and Sagawa, T.: Fabrication of strontium titanate nanofibers via electrospinning, in Zero-Carbon Energy Kyoto, Vol. 2012, edited by Yao, T. (Springer Verlag, Japan, Tokyo, 2013), p. 141.Google Scholar
Guchhait, A. and Pal, A.J.: Copper-diffused AgInS2 ternary nanocrystals in hybrid bulk-heterojunction solar cells: Near-infrared active nanophotovoltaics. ACS Appl. Mater. Interfaces 5(10), 4181 (2013).CrossRefGoogle ScholarPubMed
Wongmaneerung, R., Yimnirun, R., and Ananta, S.: Effect of vibro-milling time on phase formation and particle size of lead titanate nanopowders. Mater. Lett. 60(12), 1447 (2006).CrossRefGoogle Scholar
Subramanian, V., Roeder, R.K., and Wolf, E.E.: Synthesis and UV−visible-light photoactivity of noble-metal−SrTiO3 composites. Ind. Eng. Chem. Res. 45(7), 2187 (2006).CrossRefGoogle Scholar
Roduner, E.: Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35(7), 583 (2006).CrossRefGoogle ScholarPubMed
Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603 (1985).CrossRefGoogle Scholar
Sakatani, Y., Grosso, D., Nicole, L., Boissiere, C., de A.A. Soler-Illia, G.J., and Sanchez, C.: Optimised photocatalytic activity of grid-like mesoporous TiO2 films: Effect of crystallinity, pore size distribution, and pore accessibility. J. Mater. Chem. 16(1), 77 (2006).CrossRefGoogle Scholar
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69 (1995).CrossRefGoogle Scholar
Bao, D., Yao, X., Wakiya, N., Shinozaki, K., and Mizutani, N.: Band-gap energies of sol-gel-derived SrTiO3 thin films. Appl. Phy. Lett. 79(23), 3767 (2001).CrossRefGoogle Scholar
Supplementary material: File

Macaraig Supplementary Material

Supplementary Material

Download Macaraig Supplementary Material(File)
File 911.4 KB