Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T01:42:45.988Z Has data issue: false hasContentIssue false

Electronic structure of the thermoelectric materials PbTe and AgPb18SbTe20 from first-principles calculations

Published online by Cambridge University Press:  31 January 2011

Pengxian Lu
Affiliation:
School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China; and College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450007, People's Republic of China
Xing Hu*
Affiliation:
School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Snyder, G.J., Toberer, E.S.Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)CrossRefGoogle ScholarPubMed
2.Chung, D.Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M.G.CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 287, 1024 (2000)CrossRefGoogle ScholarPubMed
3.Mott, N.F., Jones, H.The Theory of the Properties of Metals and Alloys (Oxford Press, Clarendon, UK 1936)250264Google Scholar
4.Cutler, M., Leavy, J.F., Fitzpatrick, R.L.Electronic transport in semimetallic cerium sulfide. Phys. Rev. A 133, 1143 (1964)CrossRefGoogle Scholar
5.Ziman, J.M.Principles of the Theory of Solids (Cambridge University Press, Cambridge, MA 1972)8994CrossRefGoogle Scholar
6.Chasmar, R.P., Stratton, R.The thermoelectric figure of merit and its relation to thermoelectric generators. J. Electron. Control 7, 52 (1959)CrossRefGoogle Scholar
7.Mahan, G.D.Good thermoelectrics. Solid State Phys. 51, 81 (1997)CrossRefGoogle Scholar
8.Fano, V.CRC Handbook of Thermoelectrics edited by D.M. Rowe (CRC Press, New York 1995)257266Google Scholar
9.Hicks, L.D., Dresselhaus, M.S.Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993)CrossRefGoogle ScholarPubMed
10.Hicks, L.D., Dresselhaus, M.S.Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993)CrossRefGoogle ScholarPubMed
11.Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T.Low dimensional thermoelectric materials. Phys. Solid State 41, 755 (1999)CrossRefGoogle Scholar
12.Heremans, J.P., Thrush, C.M., Morelli, D.T.Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004)CrossRefGoogle Scholar
13.Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G.Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004)CrossRefGoogle ScholarPubMed
14.Dughaish, Z.Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B 322, (1–2)205 (2002)CrossRefGoogle Scholar
15.Conklin, J.B., Johnson, L.E., Pratt, G.W.Energy bands in PbTe. Phys. Rev. A 137, 1281 (1965)CrossRefGoogle Scholar
16.Rabe, K.M., Joannopoulos, J.D.Ab initio relativistic pseudopotential study of the zero-temperature structural properties of SnTe and PbTe. Phys. Rev. B 32, 2302 (1985)CrossRefGoogle ScholarPubMed
17.Waghmare, U.V., Spaldin, N.A., Kandpal, H.C., Seshadri, R.First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B 67, 125111 (2003)CrossRefGoogle Scholar
18.Bilc, D.I., Mahanti, S.D., Kanatzidis, M.G.Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)CrossRefGoogle Scholar
19.Hoang, K., Mahanti, S.D., Jena, P.Theoretical study of deep-defect states in bulk PbTe and in thin films. Phys. Rev. B 76, 115432 (2007)CrossRefGoogle Scholar
20.Barabash, S.V., Ozolins, V., Wolverton, C.First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTem+2 alloys. Phys. Rev. Lett. 101, 155704 (2008)CrossRefGoogle ScholarPubMed
21.Lin, H., Božin, E.S., Billinge, S.J.L., Quarez, E., Kanatzidis, M.G.Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2. Phys. Rev. B 72, 174113 (2005)CrossRefGoogle Scholar
22.Bilc, D., Mahanti, S.D., Quarez, E., Hsu, K.F., Pcionek, R., Kanatzidis, M.G.Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: The role of Ag–Sb microstructures. Phys. Rev. Lett. 93, 146403 (2004)CrossRefGoogle ScholarPubMed
23.Ravot, D.Synthesis and magnetic properties of the Pb1–xEuxTe solid solution. J. Less-Common Met. 161, 313 (1990)CrossRefGoogle Scholar
24.An, J.M., Subedi, A., Singh, D.J.Ab initio phonon dispersions for PbTe. Solid State Commun. 148, 417 (2008)CrossRefGoogle Scholar
25.Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)CrossRefGoogle Scholar
26.Kohn, W., Sham, L.J.Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965)CrossRefGoogle Scholar
27.Vanderbilt, D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
28.Marlo, M., Milman, V.Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B 62, 2899 (2000)CrossRefGoogle Scholar
29.Hammer, B., Hansen, L.B., Norkov, J.K.Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Emrhof functionals. Phys. Rev. B 59, 7413 (1999)CrossRefGoogle Scholar
30.Franscis, G.P., Payne, M.C.Finite basis set corrections to total energy pseudopotential calcaulations. J. Phys. Condens. Matter 2, 4395 (1990)CrossRefGoogle Scholar
31.Monkhorst, H.J., Pack, J.D.Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
32.Tersoff, J., Hamann, D.R.Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805 (1985)CrossRefGoogle ScholarPubMed
33.Lach-hab, M., Papaconstantopoulos, D.A., Mehl, M.J.Electronic-structure calculations of lead chalcogenides PbS, PbSe, PbTe. J. Phys. Chem. Solids 63, 833 (2002)CrossRefGoogle Scholar
34.Albanesi, E.A., Okoye, C.M.I., Petukhov, A.G.Electronic structure, structural properties, and dielectric functions of IV–VI semiconductors: PbSe and PbTe. Phys. Rev. B 61, 589 (2000)CrossRefGoogle Scholar
35.Ahmad, S., Mahanti, S.D., Hoang, K., Kanatzidis, M.G.Ab initio studies of the electronic structure of defects in PbTe. Phys. Rev. B 74, 155205 (2006)CrossRefGoogle Scholar
36.Salvador, P., Duran, M., Fradera, X.A chemical Hamiltonian approach study of the basis set superposition error changes on electron densities and one- and two-center energy components. J. Chem. Phys. 116, 6443 (2002)CrossRefGoogle Scholar
37.Slack, G.A.CRC Handbook of Thermoelectrics edited by D.M. Rowe (CRC Press, Boca Raton, FL 1995)407440Google Scholar