Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T12:34:43.731Z Has data issue: false hasContentIssue false

Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

Published online by Cambridge University Press:  25 October 2017

Krishnendu Ghosh*
Affiliation:
Electrical Engineering Department, University at Buffalo, Buffalo, New York 14260, USA
Uttam Singisetti*
Affiliation:
Electrical Engineering Department, University at Buffalo, Buffalo, New York 14260, USA
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

This work reports an investigation of electron transport in monoclinic β-Ga2O3 based on a combination of density functional perturbation theory based-lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations, and Boltzmann theory-based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes makes the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in β-Ga2O3 is studied in the bulk material form and also in the form of a two-dimensional electron gas. Under high electron density, a bulk mobility of 182 cm2/V s is predicted, while in the 2DEG form, the corresponding mobility is about 418 cm2/V s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high-electron mobility in dopant-isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR-active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Higashiwaki, M., Sasaki, K., Kamimura, T., Hoi Wong, M., Krishnamurthy, D., Kuramata, A., Masui, T., and Yamakoshi, S.: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3(010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013).CrossRefGoogle Scholar
Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., and Yamakoshi, S.: Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates. Appl. Phys. Lett. 100, 013504 (2012).Google Scholar
Higashiwaki, M., Sasaki, K., Murakami, H., Kumagai, Y., Koukitu, A., Kuramata, A., Masui, T., and Yamakoshi, S.: Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 31, 034001 (2016).Google Scholar
Oishi, T., Koga, Y., Harada, K., and Kasu, M.: High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8, 031101 (2015).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S.: Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493495 (2013).CrossRefGoogle Scholar
Higashiwaki, M., Sasaki, K., Goto, K., Nomura, K., Thieu, Q.T., Togashi, R., Murakami, H., Kumagai, Y., Monemar, B., Koukitu, A., and Kuramata, A.: Ga2O3 Schottky barrier diodes with n-Ga2O3 drift layers grown by HVPE. In 73rd Annual Device Research Conference (DRC), The ohio State University, Columbus Ohio, June 21–24 (2015), pp. 2930.Google Scholar
Oshima, T., Okuno, T., Arai, N., Suzuki, N., Ohira, S., and Fujita, S.: Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl. Phys. Express 1, 011202 (2008).Google Scholar
He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., and Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (2006).Google Scholar
Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J.R., Varley, J.B., and VandeWalle, C.G.: Experimental electronic structure of In2O3 and Ga2O3 . New J. Phys. 13, 085014 (2011).Google Scholar
Peelaers, H. and Van de Walle, C.G.: Brillouin zone and band structure of β-Ga2O3 . Phys. Status Solidi B 252, 828832 (2015).Google Scholar
Zhang, Y., Yan, J., Zhao, G., and Xie, W.: First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3 . Physica B 405, 38993903 (2010).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S.: β-Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493495 (2013).Google Scholar
Liu, B., Gu, M., and Liu, X.: Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl. Phys. Lett. 91, 172102 (2007).Google Scholar
Santia, M.D., Tandon, N., and Albrecht, J.D.: Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015).Google Scholar
Schubert, M., Korlacki, R., Knight, S., Hofmann, T., Schöche, S., Darakchieva, V., Janzén, E., Monemar, B., Gogova, D., Thieu, Q.T., Togashi, R., Murakami, H., Kumagai, Y., Goto, K., Kuramata, A., Yamakoshi, S., and Higashiwaki, M.: Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).Google Scholar
Parisini, A. and Fornari, R.: Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 31, 035023 (2016).Google Scholar
Ghosh, K. and Singisetti, U.: Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016).Google Scholar
Kang, Y., Krishnaswamy, K., Peelaers, H., and VandeWalle, C.G.: Fundamental limits on the electron mobility of β-Ga2O3 . J. Phys.: Condens. Matter 29, 234001 (2017).Google Scholar
Ma, N., Verma, A., Guo, Z., Luo, T., and Jena, D.: Intrinsic electron mobility limits in β-Ga2O3 . Appl. Phy. Lett. 109(21), 212101 (2016).Google Scholar
Verdi, C. and Giustino, F.: Frohlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015).Google Scholar
Baroni, S., Gironcoli, S.D., and Corso, A.D.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515562 (2001).Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Noffsinger, J., Giustino, F., Malone, B.D., Park, C-H., Louie, S.G., and Cohen, M.L.: EPW: A program for calculating the electron–phonon coupling using maximally localized wannier functions. Comput. Phys. Commun. 181, 21402148 (2010).Google Scholar
Giustino, F., Cohen, M.L., and Louie, S.G.: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007).Google Scholar
Gonze, X. and Lee, C.: Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).Google Scholar
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 12721276 (2011).CrossRefGoogle Scholar
Diff, K. and Brennan, K.F.: Theory of electron-plasmon-scattering rate in highly doped bulk semiconductors. J. Appl. Phys. 69, 30973103 (1991).Google Scholar
Fischetti, M.V., Neumayer, D.A., and Cartier, E.A.: Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 45874608 (2001).CrossRefGoogle Scholar
Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3, 325361 (1954).CrossRefGoogle Scholar
Rode, D.: Low-field electron transport. Semicond. Semimetals 10, 189 (1975).Google Scholar
Wong, M.H., Sasaki, K., Kuramata, A., Yamakoshi, S., and Higashiwaki, M.: Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55, 1202B1209 (2016).Google Scholar
Krishnamoorthy, S., Xia, Z., Joishi, C., Zhang, Y., McGlone, J., Johnson, J., Brenner, M., Arehart, A.R., Hwang, J., Lodha, S., and Rajan, S.: Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 111, 023502 (2017).Google Scholar
Walukiewicz, W., Ruda, H.E., Lagowski, J., and Gatos, H.C.: Electron mobility in modulation-doped heterostructures. Phys. Rev. B 30, 4571 (1984).CrossRefGoogle Scholar
Ando, T., Fowler, A.B., and Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437672 (1982).Google Scholar
Stern, F.: Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546548 (1967).Google Scholar
Supplementary material: File

Ghosh and Singisetti supplementary material

Ghosh and Singisetti supplementary material 1

Download Ghosh and Singisetti supplementary material(File)
File 20 KB