Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:05:51.708Z Has data issue: false hasContentIssue false

Electrochemical self-assembly of Cu/Cu2O nanowires

Published online by Cambridge University Press:  31 January 2011

S. Kenane
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
L. Piraux
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
Get access

Abstract

Arrays of Cu/Cu2O nanowires were grown by electrodeposition in the nanopores of track-etched polymer membranes. If an appropriate solution is used, the electrode potential spontaneously oscillates during the application of a constant cathodic current. Both the period of the oscillations and the composition of the nanowires can be controlled by varying the applied current density. A nanocomposite of copper and cuprous oxide is deposited at an applied current over which oscillations occur. In contrast, pure Cu or Cu2O nanowires are obtained at a deposition current out of the range of oscillation. Electrical transport measurements were also performed on these nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Whitney, T.M., Jiang, J.S., Searson, P., and Chien, C., Science 261, 1316 (1993).CrossRefGoogle Scholar
2.Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 65, 2484 (1994).CrossRefGoogle Scholar
3.Fert, A. and Piraux, L., J. Magn. Magn. Mater. 200, 338 (1999).CrossRefGoogle Scholar
4.Encinas-Oropesa, A., Demand, M., Piraux, L., Huynen, I., and Ubels, U., Phys. Rev. B63, 104415 (2001).CrossRefGoogle Scholar
5.Dubois, S., Michel, A., Eymery, J., Duvail, J.L., and Piraux, L., J. Mater. Res. 14, 665 (1999).CrossRefGoogle Scholar
6.Michotte, S., Matefi, S., and Piraux, L. (unpublished).Google Scholar
7.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
8.Duchet, J., Legras, R., and Demoustier-Champagne, S., Synth. Met. 98, 113 (1998).CrossRefGoogle Scholar
9.Huang, L-Y., Bohannan, E.W., Hung, C-J., and Switzer, J.A., Israel J. Chem. 37, 297 (1997).CrossRefGoogle Scholar
10.Switzer, J.A., Hung, C-J., Huang, L-Y., Miller, F.S., Zhou, Y., Raub, E.R., Shumsky, M.G., and Bohannan, E.W., J. Mater. Res. 13, 909 (1998).CrossRefGoogle Scholar
11.Switzer, J.A., Hung, C-J., Huang, L-Y., Switzer, E.R., Kammler, D.R., Golden, T.D., and Bohannan, E.W., J. Am. Chem. Soc. 120, 3530 (1998).CrossRefGoogle Scholar
12.Bohannan, E.W., Huang, L-Y., Miller, F.S., Shumsky, M.G., and Switzer, J.A., Langmuir 15, 813 (1999).CrossRefGoogle Scholar
13.Switzer, J.A., Maune, B.M., Raub, E.R., and Bohannan, E.W., J. Phys. Chem. B103, 395 (1999).CrossRefGoogle Scholar
14.Ferain, E. and Legras, R., Nucl. Instrum. Methods Phys. Res. B174, 116 (2001).CrossRefGoogle Scholar
15.Dewald, H.D., Parmananda, P., and Rollins, R.W., J. Electrochem. Soc. 140, 1969 (1993).CrossRefGoogle Scholar
16.Zhou, Y. and Switzer, J.A., Scripta Mater. 38, 1731 (1998).CrossRefGoogle Scholar
17.Carrey, J., (unpublished).Google Scholar
18.Lee, P.A. and Ramakrishnan, T.V., Rev. Mod. Physics 57, 287 (1985).CrossRefGoogle Scholar