Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:03:35.607Z Has data issue: false hasContentIssue false

Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing

Published online by Cambridge University Press:  04 September 2018

Yuichi Yamazaki*
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Yoji Chiba
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan; and Graduate School of Science and Engineering, Saitama University, Saitama 338-0825, Japan
Takahiro Makino
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Shin-Ichiro Sato
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Naoto Yamada
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Takahiro Satoh
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
Yasuto Hijikata
Affiliation:
Graduate School of Science and Engineering, Saitama University, Saitama 338-0825, Japan
Kazutoshi Kojima
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
Sang-Yun Lee
Affiliation:
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Takeshi Ohshima
Affiliation:
National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single photon sources (SPS) are an important building block for realizing quantum technologies for computing, communication, and sensing. For industrialization, electrically controllable color centers acting as SPS are required. We have demonstrated the creation of electrically controllable silicon vacancies (VSis) in the SiC pn junction diode fabricated by proton beam writing (PBW). PBW was successfully used to introduce electrically controllable VSi without degradation of the diode performance. The dependence of the electroluminescence (EL) and photoluminescence (PL) intensities from VSi on H+ fluence revealed that the emission efficiency of EL is less than that of PL. For EL, the supply of carriers (electrons and/or holes) was restricted due to the resistive region around each VSi introduced by PBW. The results suggest that further improvement in the VSi creation process without defects acting as majority carrier removal centers (highly resistive region) and nonradiative centers by optimization of PBW conditions are key points to realize highly sensitive quantum sensors using VSi.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

The IBM quantum experience: Available at: http://www.research.ibm.com/quantum (accessed May 22, 2018).Google Scholar
Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., and Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).CrossRefGoogle Scholar
Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., and Monroe, C.: Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).CrossRefGoogle Scholar
Ichimura, K.: A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode. Opt. Commun. 196, 119 (2001).CrossRefGoogle Scholar
Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., and Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005).CrossRefGoogle ScholarPubMed
Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., and Wrachtrup, J.: Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648 (2008).CrossRefGoogle ScholarPubMed
Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrüggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J.F., Neumann, P., and Wrachtrup, J.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014).CrossRefGoogle Scholar
Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., and Wrachtrup, J.: Electric-field sensing using single diamond spins. Nat. Phys. 7, 459 (2011).CrossRefGoogle Scholar
Tetienne, J.P., Dontschuk, N., Broadway, D.A., Stacey, A., Simpson, D.A., and Hollenberg, L.C.L.: Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).CrossRefGoogle ScholarPubMed
Fuchs, F., Stender, B., Trupke, M., Simin, D., Pflaum, J., Dyakonov, V., and Astakhov, G.V.: Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).CrossRefGoogle ScholarPubMed
Widmann, M., Lee, S.Y., Rendler, T., Son, N.T., Fedder, H., Paik, S., Yang, L.P., Zhao, N., Yang, S., Booker, I., Denisenko, A., Jamali, M., Momenzadeh, S.A., Gerhardt, I., Ohshima, T., Gali, A., Janzén, E., and Wrachtrup, J.: Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164 (2015).CrossRefGoogle ScholarPubMed
Castelletto, S., Johnson, B.C., Ivády, V., Stavrias, N., Umeda, T., Gali, A., and Ohshima, T.: A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151 (2014).CrossRefGoogle ScholarPubMed
Christle, D.J., Falk, A.L., Andrich, P., Klimov, P.V., Ul Hassan, J., Son, N.T., Janzén, E., Ohshima, T., and Awschalom, D.D.: Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160 (2015).CrossRefGoogle ScholarPubMed
de las Casas, C.F., Christle, D.J., Hassan, J.U., Ohshima, T., Son, N.T., and Awschalom, D.D.: Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).CrossRefGoogle Scholar
Lohrmann, A., Iwamoto, N., Bodrog, Z., Castelletto, S., Ohshima, T., Karle, T.J., Gali, A., Prawer, S., McCallum, J.C., and Johnson, B.C.: Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).CrossRefGoogle ScholarPubMed
Lohrmann, A., Castelletto, S., Klein, J.R., Ohshima, T., Bosi, M., Negri, M., Lau, D.W.M., Gibson, B.C., Prawer, S., McCallum, J.C., and Johnson, B.C.: Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett. 108, 021107 (2016).CrossRefGoogle Scholar
Abe, Y., Umeda, T., Okamoto, M., Kosugi, R., Harada, S., Haruyama, M., Kada, W., Hanaizumi, O., Onoda, S., and Ohshima, T.: Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 112, 031105 (2018).CrossRefGoogle Scholar
Baranov, P.G., Bundakova, A.P., and Soltamova, A.A.: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).CrossRefGoogle Scholar
Simin, D., Soltamov, V.A., Poshakinskiy, A.V., Anisimov, A.N., Babunts, R.A., Tolmachev, D.O., Mokhov, E.N., Trupke, M., Tarasenko, S.A., Sperlich, A., Baranov, P.G., Dyakonov, V., and Astakhov, G.V.: All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).Google Scholar
Niethammer, M., Widmann, M., Lee, S-Y., Stenberg, P., Kordina, O., Ohshima, T., Son, N.T., Janzén, E., and Wrachtrup, J.: Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 034001 (2016).CrossRefGoogle Scholar
Cochrane, C.J., Blacksberg, J., Anders, M.A., and Lenahan, P.M.: Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077 (2016).CrossRefGoogle ScholarPubMed
Anisimov, A.N., Simin, D., Soltamov, V.A., Lebedev, S.P., Baranov, P.G., Astakhov, G.V., and Dyakonov, V.: Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).CrossRefGoogle ScholarPubMed
Fuchs, F., Soltamov, V.A., Väth, S., Baranov, P.G., Mokhov, E.N., Astakhov, G.V., and Dyakonov, V.: Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013).CrossRefGoogle ScholarPubMed
Kraus, H., Simin, D., Kasper, C., Suda, Y., Kawabata, S., Kada, W., Honda, T., Hijikata, Y., Ohshima, T., Dyakonov, V., and Astakhov, G.V.: Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 17, 2865 (2017).CrossRefGoogle ScholarPubMed
Ohshima, T., Honda, T., Onoda, S., Makino, T., Haruyama, M., Kamiya, T., Satoh, T., Hijikata, Y., Kada, W., Hanaizumi, O., Lohrmann, A., Klein, J.R., Johnson, B.C., McCallum, J.C., Castelletto, S., Gibson, B.C., Kraus, H., Dyakonov, V., and Astakhov, G.V.: Creation and functionalization of defects in SiC by proton beam writing. Mater. Sci. Forum 897, 233 (2017).CrossRefGoogle Scholar
SRIM—The stopping and range of ions in matter: Available at: http://www.srim.org/ (accessed May 22, 2018).Google Scholar
Kato, H., Wolfer, M., Schreyvogel, C., Kunzer, M., Sebert, W.M., Obloh, H., Yamasaki, S., and Nebel, C.: Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes. Appl. Phys. Lett. 102, 151101 (2013).CrossRefGoogle Scholar
Patrick, L. and Choyke, W.J.: Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys. Rev. B 5, 3253 (1972).CrossRefGoogle Scholar
Lohrmann, A., Pezzagna, S., Dobrinets, I., Spinicelli, P., Jacques, V., Roch, J-F., Meijer, J., and Zaitsev, A.M.: Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011).CrossRefGoogle Scholar