Published online by Cambridge University Press: 31 January 2011
The electrical resistivity of fluorinated carbon black particles, CFx, is reported as a function of fluorine content, pressure, and temperature. Fluorination does not destroy the aggregate structure of carbon black, but does change its physical properties. The resistivity changes from 10−2 to 10+12 Ω cm as x increases from 0 to 1.2, with a very rapid change occurring in the range 0.08≤x≤0.27. Samples with x = 0 and x = 0.07 exhibit a pressure dependence described by p∝ P−s with s>0. Fully fluorinated samples (x = 1.2) have s≃0. Intermediate compositions have low-pressure regimes where the resistivity is independent of pressure, and high-pressure regimes with s>0. For all samples exhibiting pressure-dependent resistivity, s increases as x increases. For samples with low-fluorine content, the resisitivity increases with decreasing temperature. These observations are interpreted in terms of structure, especially surface structure.