Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:31:09.421Z Has data issue: false hasContentIssue false

The electrical properties of La2CuO4/ZnO heterocontacts at different relative humidities

Published online by Cambridge University Press:  03 March 2011

Enrico Traversa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Univesita' di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Andrea Bearzotti
Affiliation:
Istituto di Elettronica dello Stato Solido (IESS), C.N.R., Via Cineto Romano 42, 00156 Roma, Italy
Masaru Miyayama
Affiliation:
Research Center for Advanced Science and Technology (RCAST), University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153. Japan
Hiroaki Yanagida
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

The humidity-sensing electrical properties of heterocontacts between p-type La2CuO4 and n-type ZnO semiconductors, and of the single oxides, as a comparison, were studied. The heterocontacts was prepared by mechanically pressing sintered disks of the two oxides. The electrical characterization of the heterocontacts was carried out using dc and ac measurements at various relative humidity (RH) values, in order to evaluate the sensing mechanisms and the electrical properties of these p-n junctions. Their humidity sensitivity was explained in terms of the variation of the barrier height at the p-n junctions, due to the saturation of the original interface states by physisorbed water, which leads to the release of trapped electrons, resulting in an increase in the forward current. The higher the number of interface states, the higher the RH-sensitivity of the heterocontacts. Electrochemical impedance spectroscopy (EIS) measurements showed, at 90% RH, a distribution of capacitances with different relaxation times, which may be caused by the electrolysis of water molecules at p-n junction sites. For their use as humidity sensors, they showed a response of 4 orders of magnitude in the whole RH range tested, and a fast response time. The response of the heterocontacts was bias-dependent, tunable by externally applied electric field. They also have stand-by capability and a self-cleaning mechanism, which allow them to be described as intelligent materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kulwicki, B.M., J. Am. Ceram. Soc. 74, 697 (1991).CrossRefGoogle Scholar
2Yamazoe, N. and Shimizu, Y., Sens. Actuators 10, 379 (1986).CrossRefGoogle Scholar
3Yagi, H., in Proc. Symp. Chemical Sensors II, edited by Butler, M., Ricco, A., and Yamazoe, N. (The Electrochemical Society, Pennington, NJ, 1993), Vol. 93–7, p. 498.Google Scholar
4Göpel, W., Sens. Actuators B 18, 1 (1994).CrossRefGoogle Scholar
5Traversa, E., Sens. Actuators B 23, 135 (1995).CrossRefGoogle Scholar
6Fagan, J. G. and Amarakoon, V. R. W., Am. Ceram. Soc. Bull. 72 (3), 119 (1993).Google Scholar
7Nitta, T., in Chemical Sensor Technology, edited by Seiyama, T. (Kodansha, Tokyo, and Elsevier, Amsterdam, 1988), Vol. 1, p. 57.CrossRefGoogle Scholar
8Shimizu, Y., Shimabukuro, M., Arai, H., and Seiyama, T., J. Electrochem. Soc. 136, 1206 (1989).CrossRefGoogle Scholar
9Nagata, K., Nishino, M., and Goto, K.S., J. Electrochem. Soc. 134, 1850 (1987).CrossRefGoogle Scholar
10Usui, T., Kurumiya, Y., Nuri, K., and Nakazawa, M., Sens. Actuators 16, 345 (1989).CrossRefGoogle Scholar
11Iwahara, H., in Chemical Sensor Technology, edited by Yamazoe, N. (Kodansha, Tokyo, and Elsevier, Amsterdam, 1990), Vol. 3, p. 117.Google Scholar
12Yagi, H. and Ichikawa, K., Sens. Actuators B 13, 92 (1993).CrossRefGoogle Scholar
13Kawakami, K. and Yanagida, H., J. Ceram. Soc. Jpn. 87, 112 (1979).Google Scholar
14Toyoshima, Y., Miyayama, M., Yanagida, H., and Koumoto, K., Jpn. J. Appl. Phys. 22, 1933 (1983).CrossRefGoogle Scholar
15Nakamura, Y., Dcejiri, M., Miyayama, M., Koumoto, K., and Yanagida, H., J. Chem. Soc. Jpn., 1154 (1985).Google Scholar
16Marra, R. A., Nakamura, Y., Fujitsu, S., and Yanagida, H., J. Am. Ceram. Soc. 69, C143 (1986).CrossRefGoogle Scholar
17Yoo, D. J., Song, K.H., and Park, S.J., in Tech. Digest, The 4th Int. Meet, on Chem. Sensors, Tokyo, Japan, Sept. 13–17, 1992, p. 108.Google Scholar
18Schierbaum, K. D., in Tech. Digest, The 5th Int. Meet, on Chem. Sensors, Rome, Italy, July 11–14, 1994, p. 313.Google Scholar
19Matsushima, S., Miura, N., and Yamazoe, N., Chem. Lett., 2001 (1987).CrossRefGoogle Scholar
20Schierbaum, K. D., Kirner, U.K., Geiger, J. F., and Göpel, W., Sens. Actuators B 4, 87 (1991).CrossRefGoogle Scholar
21Kobayashi, H., Kishimoto, K., Nakato, Y., and Tsubomura, H., Sens. Actuators B 13, 125 (1993).CrossRefGoogle Scholar
22Lin, F. C., Takao, Y., Shimizu, Y., and Egashira, M., Denki Kagaku 61, 1021 (1993).CrossRefGoogle Scholar
23Shimizu, Y., Lin, F. C., Takao, Y., and Egashira, M., in Tech. Digest, The 5th Int. Meet, on Chem. Sensors, Rome, Italy, July 11–14, 1994, p. 1144.Google Scholar
24Nakamura, Y., Yoshioka, H., Miyayama, M., Yanagida, H., Tsurutani, T., and Nakamura, Y., J. Electrochem. Soc. 137, 940 (1990).CrossRefGoogle Scholar
25Nakamura, Y., Ando, A., Tsurutani, T., Okada, O., Miyayama, M., Koumoto, K., and Yanagida, H., Chem. Lett., 413 (1986).CrossRefGoogle Scholar
26Nakamura, Y., Tsurutani, T., Miyayama, M., Okada, O., Koumoto, K., and Yanagida, H., J. Chem. Soc. Jpn., 477 (1987).Google Scholar
27Miyayama, M., Yatabe, H., Nakamura, Y., and Yanagida, H., J. Ceram. Soc. Jpn. 95, 1145 (1987).Google Scholar
28Nakamura, Y., Koyama, R., Koumoto, K., and Yanagida, H., J. Ceram. Soc. Jpn. 99, 823 (1991).CrossRefGoogle Scholar
29Mitsuoka, M., Otofuji, A., and Arakawa, T., Sens. Actuators B 9, 205 (1992).CrossRefGoogle Scholar
30Ushio, Y., Miyayama, M., and Yanagida, H., in JFCC Workshop Series, Materials Processing and Design, 1992, p. 40.Google Scholar
31Osawa, H., Jung, S.J., Nakamura, Y., and Yanagida, H., in Proc. Symp. Chemical Sensors II, edited by Butler, M., Ricco, A., and Yamazoe, N. (The Electrochemical Society, Pennington, NJ, 1993), Vol. 93–7, p. 490.Google Scholar
32Jun, S.T. and Choi, G.M., Sens. Actuators B 17, 175 (1994).CrossRefGoogle Scholar
33Traversa, E., Miyayama, M., and Yanagida, H., Sens. Actuators B 17, 257 (1994).CrossRefGoogle Scholar
34Miyayama, M., Hikita, K., and Yanagida, H., in Tech. Digest, The 5th Int. Meet, on Chem. Sensors, Rome, Italy, July 11–14, 1994, p. 484.Google Scholar
35Ishihara, T., Sato, S., and Takita, Y., in Tech. Digest, The 5th Int. Meet, on Chem. Sensors, Rome, Italy, July 11–14, 1994, p. 494.Google Scholar
36Koshizaki, N. and Suga, K., in Tech. Digest, The 5th Int. Meet, on Chem. Sensors, Rome, Italy, July 11–14, 1994, p. 508.Google Scholar
37Jung, S.J., Ohsawa, H., Nakamura, Y., Yanagida, H., Hasumi, K., and Okada, O., J. Electrochem. Soc. 141, L53 (1994).CrossRefGoogle Scholar
38Hikita, K., Miyayama, M., and Yanagida, H., J. Am. Ceram. Soc. 77, 1961 (1994).CrossRefGoogle Scholar
39Lukaszewicz, J.P., Sens. Actuators B 4, 227 (1991).CrossRefGoogle Scholar
40Lukaszewicz, J.P., Sens. Actuators B 6, 61 (1992).CrossRefGoogle Scholar
41Tsurumi, S., Mogi, K., and Noda, J., in Digest of Techn. Papers, The 4th Int. Conf. on Solid-State Sensors and Actuators, Transducers '87, Tokyo, Japan, June 7–10, 1987, p. 661.Google Scholar
42Traversa, E. and Bearzotti, A., J. Ceram. Soc. Jpn. 103, 11 (1995).CrossRefGoogle Scholar
43Traversa, E. and Bearzotti, A., Sens. Actuators B 23, 181 (1995).CrossRefGoogle Scholar
44Yanagida, H., Angew. Chem. 100, 1443 (1988).CrossRefGoogle Scholar
45Yanagida, H., Ferroelectrics 102, 251 (1990).CrossRefGoogle Scholar
46Traversa, E., Miyayama, M., and Yanagida, H., in Intelligent Materials and Systems, edited by Vincenzini, P. (Techna, Faenza, Italy, 1995) p. 39.Google Scholar
47Yagi, H. and Yanagida, H., Jpn. Sensor Newsletter 5 (3), 23 (1991).Google Scholar
48Ushio, Y., Miyayama, M., and Yanagida, H., Sens. Actuators B 12, 135 (1993).CrossRefGoogle Scholar
49Ichinose, N., Chem. Sensors 9 [Suppl. A], 41 (1993).Google Scholar
50Shimizu, Y., Arai, H., and Seiyama, T., Sens. Actuators 7, 11 (1985).CrossRefGoogle Scholar
51Chiodelli, G. and Lupotto, P., J. Electrochem. Soc. 138, 2703 (1991).CrossRefGoogle Scholar
52Ushio, Y., Miyayama, M., and Yanagida, H., Sens. Actuators B 17, 221 (1994).CrossRefGoogle Scholar
53Sze, S.M., Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981), Chap. 2.Google Scholar
54Okamura, T., Seki, Y., Nagakari, S., and Okushi, H., Jpn. J. Appl. Phys. 31, 3218 (1992).CrossRefGoogle Scholar
55Williams, R.H., McLean, A.B., Evans, D.A., and Herrenden-Harker, W.G., J. Vac. Sci. Technol. B 4, 966 (1986).CrossRefGoogle Scholar
56Platen, W., Schmutzler, H.J., Kohl, D., Brauchle, K.A., and Wolter, K., J. Appl. Phys. 64, 218 (1988).CrossRefGoogle Scholar
57Baek, K.K. and Tuller, H.L., Sens. Actuators B 13, 238 (1993).CrossRefGoogle Scholar
58Irvine, J.T. S., Sinclair, D.C., and West, A. R., Adv. Mater. 2, 132 (1990).CrossRefGoogle Scholar
59Yeh, Y. C., Tseng, T. Y., and Chang, D. A., J. Am. Ceram. Soc. 73, 1992 (1990).CrossRefGoogle Scholar
60Gusmano, G., Montesperelli, G., Traversa, E., and Bearzotti, A., Sens. Actuators B 14, 525 (1993).CrossRefGoogle Scholar
61Bearzotti, A., Bianco, A., Montesperelli, G., and Traversa, E., Sens. Actuators B 19, 525 (1994).CrossRefGoogle Scholar