Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:33:45.026Z Has data issue: false hasContentIssue false

Electrical characterization of magnetoelectrical materials

Published online by Cambridge University Press:  31 January 2011

J.F. Scott*
Affiliation:
Centre for Ferroics, Earth Sciences Department, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A brief review is given of electrical properties of magnetoelectric, multiferroic materials, with emphasis on magnetocapacitance effects, nanostructures, integration into real random access memories, and critical phenomena, including defect dynamics near phase transitions.

Type
REVIEW—Multiferroics Special Section
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Smolenskii, G.A.: Fiz. Tverd. Tela. 1, 149 1959 in RussianGoogle Scholar
2Jaffe, B., Cook, W.R.Jaffe, H.: Piezoelectric Ceramics Techbooks New York [reprint issue] 1989Google Scholar
3Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M.G., Scott, J.F.Mathur, N.D.: Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 2005CrossRefGoogle Scholar
4Eerenstein, W., Morrison, F.D., Scott, J.F., Mathur, N.D.: Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87, 101906 2005CrossRefGoogle Scholar
5Perrier, A.Staring, A.J.: Arch. Sci. Phys. Nat. (Geneva) 4, 373 1922Google Scholar
6Perrier, A.Staring, A.J.: Arch. Sci. Phys. Nat. (Geneva) 5, 333 1923Google Scholar
7Dzyaloshinskii, I.E.: Zh. Eksp. Teor. Fiz. 10, 628 1959 in RussianGoogle Scholar
8Astrov, D.N.: Zh. Eksp. Teor. Fiz. 11 708, 1960 in RussianGoogle Scholar
9Borovik-Romanov, A.S.: Zh. Eksp. Teor. Fiz. 11 786, 1960 in RussianGoogle Scholar
10Hou, S.L.Bloembergen, N.: Paramagnetoelectric effects in NiSO4.6H2O Phys. Rev. 138, A1218 1965CrossRefGoogle Scholar
11Scott, J.F.: Mechanisms of dielectric anomalies in BaMnF4. Phys. Rev. B16, 2329 1977CrossRefGoogle Scholar
12Glass, A.M., Lines, M.E., Eibschutz, M., Hsu, F.S.L., Guggenheim, H.J.: Observation of anomalous pyroelectric behavior in BaNiF4 due to cooperative magnetic singularity. Commun. Phys. 2, 103 1977Google Scholar
13Samara, G.A., Scott, J.F.: Dielectric anomalies in BaMnF4 at low-temperatures. Solid State Commun. 21, 167 1977CrossRefGoogle Scholar
14Scott, J.F.: Phase-transitions in BaMnF4. Rep. Prog. Phys. 42, 1055 1979CrossRefGoogle Scholar
15Fox, D.L.Scott, J.F.: Ferroelectrically induced ferromagnetism. J. Phys. C: Solid State Phys. 10, L329 1977CrossRefGoogle Scholar
16Catalan, G.: Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 2006CrossRefGoogle Scholar
17Egami, T.: Giant dielectric permittivity and magnetocapacitance in La0.875Sr0.125MnO3 single crystals in Proceedings of the International Workshop on Fundamentals of Ferroelectricity, (Williamsburg, VA, March 2006)Google Scholar
18Starešinić, D., Lunkenheimer, P., Hemberger, J., Biljaković, K.Loidl, A.: Giant dielectric response in the one-dimensional charge-ordered semiconductor (NbSe4)3I. Phys. Rev. Lett. 96, 046402 2006CrossRefGoogle ScholarPubMed
19Lunkenheimer, P., Fichtl, R., Hemberger, J., Tsurkan, V., Loidl, A.: Relaxation dynamics and colossal magnetocapacitive effect in CdCr2S4. Phys. Rev. B 72, 60103 2005CrossRefGoogle Scholar
20Weber, S., Lunkenheimer, P., Fichtl, R., Hemberger, J., Tsurkan, V.Loidl, A.: Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4. Phys. Rev. Lett. 96, 157202 2006CrossRefGoogle ScholarPubMed
21Hemberger, J., Lunkenheimer, P., Fichtl, R., von Nidda, H-A. Krug, Tsurkan, V.Loidl, A.: Multiferroic behavior in CdCr2X4 (X = S, Se). Nature 434, 364 2005CrossRefGoogle Scholar
22Fennie, C.J.Rabe, K.M.: Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles. Phys. Rev. B: Solid State 72, 214123 2005 K.M. Rabe: (private communication, 2006)CrossRefGoogle Scholar
23Catalan, G.Scott, J.F.: Comment on “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4” (arxiv/ cond-mat/0607500, 2006),Google Scholar
24Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 1946CrossRefGoogle Scholar
25Landau, L.D.Lifshitz, E.: Phys. Z. Sov. Union 8 153, 1935 in RussianGoogle Scholar
26Harrison, R.J., Dunin-Borkowski, R.E.Putnis, A.: Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl. Acad. Sci. U.S.A. 99, 16556 2002CrossRefGoogle ScholarPubMed
27Mermin, N.D.: Topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 1979CrossRefGoogle Scholar
28De Guerville, F., Luk’yanchuk, I.A.Lahoche, L.: Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng., B 120, 16 2005CrossRefGoogle Scholar
29Stephanovich, V.A., Luk’yanchuk, I.A.Karkut, M.G.: Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys. Rev. Lett. 94, 047601 2005CrossRefGoogle ScholarPubMed
30Scott, J.F.: Nano-ferroelectrics: Statics and dynamics. J. Phys.: Condens. Matter 18, R361 2006Google Scholar
31Floquet, N.Valot, C.: Ferroelectric domain walls in BaTiO3: Structural wall model interpreting fingerprints in XRPD diagrams. Ferroelectrics 234, 107 1999CrossRefGoogle Scholar
32Floquet, N., Valot, C.M., Mesnier, M.T.: Ferroelectric domain walls in BaTiO3: Fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Phys. III (Paris) 7, 1105 1997Google Scholar
33Meyer, B.Vanderbilt, D.: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 2002CrossRefGoogle Scholar
34Kawano, K., Kosuge, H., Oshima, N.Funakubo, H.: Conformability of ruthenium dioxide films prepared on substrates with capacitor holes by MOCVD and modification by annealing. Electrochem. Solid-State Lett. 9, C175 2006CrossRefGoogle Scholar
35Miyake, M., Morrison, F.D., Scott, J.F., Tatsuta, T.Tsuji, O.: Coating of DRAM trenches with Ru electrodes and PZT dielectric films via misted deposition. Integ. Ferroelectrics. 2007 in pressGoogle Scholar
36Zhu, X.H., Evans, P.R., Byrne, D., Schilling, A., Douglas, C., Pollard, R.J., Bowman, R.M., Gregg, J.M., Morrison, F.D.Scott, J.F.: Perovskite lead zirconium titanate nanorings: Towards nanoscale ferroelectric “solenoids”? Appl. Phys. Lett. 89, 129913 2006CrossRefGoogle Scholar
37Gutkin, M.Y., Ovid’ko, I.A.Sheinerman, A.G.: Misfit dislocations in wire composite solids. J. Phys.: Condens. Matter 12, 5391 2000Google Scholar
38Sheinerman, A.G.Gutkin, M.Y.: Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Phys. Status Solidi A 184, 485 20013.0.CO;2-4>CrossRefGoogle Scholar
39Bobylev, S.V., Gutkin, M.Y.Ovid’ko, I.A.: Nanograins with 90 degrees grain boundaries in high transition temperature superconducting films. J. Phys.: Condens. Matter 15, 7925 2003Google Scholar
40Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendorff, J.H., Zakharov, N.D., Ramesh, R.Alexe, M.: Ferroelectric lead zirconate titanate and barium titanate nanotubes Integ. Ferroelectrics 59, 1513 2003CrossRefGoogle Scholar
41Ramesh, R.Ebenezer, D.D.: Analysis of axially polarized piezoelectric ceramic rings. Ferroelectrics 323, 17 2005CrossRefGoogle Scholar
42Ramesh, R., Ebenezer, D.D.: Exact analysis of axially polarized piezoelectric ceramic cylinders with certain uniform boundary conditions. Curr. Sci. 85, 1173 2003Google Scholar
43Ramesh, R., Ebenezer, D.D.: Analysis of axially polarized piezoelectric cylinders with arbitrary boundary conditions on flat surfaces. J. Acoust. Soc. Am. 113, 1900 2003Google Scholar
44Paruch, P., Giamarchi, T.Triscone, J-M.: Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 2004CrossRefGoogle Scholar
45Kalinin, S.V.: private communication 2006Google Scholar
46Kleemann, W., Dec, J., Prosandeev, S.A., Braun, T.Thomas, P.A.: Universal domain wall dynamics in ferroelectrics and relaxors. Ferroelectrics 334, 3 2006CrossRefGoogle Scholar
47Scott, J.F.: Absence of true critical exponents in relaxor ferroelectrics: The case for defect dynamics. J. Phys.: Condens. Matter 18, 7123 2006Google Scholar
48Macdonald, J.R.: Impedance Spectroscopy Wiley New York 1987Google Scholar
49Curie, P.: Ann. Chim. Phys. 18, 203 1889 von Schweidler, E.: Ann. Phys. 24, 711 1907Google Scholar
50Larkin, A.I.Khmelnitskii, D.E.: Zh. Eksp. Teor. Fiz. 56 2087, 1969 in RussianGoogle Scholar
51Levanyuk, A.P.Sigov, A.S.: Izv. Akad. Nauk SSSR Ser. Fiz. 43 1562, 1979 in RussianGoogle Scholar
52Imry, Y.Wortis, M.: Influence of quenched impurities on 1st-order phase transitions. Phys. Rev., B 19, 3580 1979CrossRefGoogle Scholar
53Ryan, T.W., Nelmes, R.J., Cowley, R.A.Gibaud, A.: Observation of two length scales for the critical fluctuations of RbCaF3. Phys. Rev. Lett. 56, 2704 1986CrossRefGoogle ScholarPubMed
54Kishinetz, Y.M., Levanyuk, A.P., Morosov, A.I.Sigov, A.S.: Dislocation- induced anomalies of physical properties of crystals near structural phase transitions. Ferroelectrics 79, 321 1988CrossRefGoogle Scholar
55Murosov, A.I., Sigov, A.S.: Influence of defects on phase transitions. Comments Condens. Matt. Phys. 18, 279 1998Google Scholar
56Ginzburg, V.L., Gorbatsevich, A.A., Kopaev, Y.V.: On the problem of superdiamagnetism. Solid State Commun. 50, 339 1984CrossRefGoogle Scholar
57Sannikov, D.G.: A sequence of two ferrotoroidal phase transitions in nickel-bromine boracite Ni3B7O13Br. JETP Lett. 73, 401 2001 Dynamics of domain wall in ferrotoroic phase of boracites. Ferroelectrics 291, 163 2003CrossRefGoogle Scholar
58Sannikov, D.G., Zheludev, I.S.: Possibility of phase transition with spontaneous toroidal moment formation in nickel boracites. Sov. Phys. Solid State 27, 826 1985Google Scholar
59Dubovik, V.M.Tugushev, V.V.: Toroid moments in electrodynamics and solid- state physics. Phys. Rep. 187, 145 1990CrossRefGoogle Scholar
60Schmid, H.: On ferrotoroids and electrotoroidic, magnetotoroidic and piezotoroidic Effects. Ferroelectrics 252, 41 2001CrossRefGoogle Scholar
61Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 2005CrossRefGoogle Scholar
62Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 2006CrossRefGoogle ScholarPubMed
63Naumov, I., Bellaiche, L.Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 2004CrossRefGoogle ScholarPubMed
64Scott, J.F.: Ferroelectrics: Novel geometric ordering of ferroelectricity. Nat. Mater. 4, 13 2005CrossRefGoogle Scholar
65Ponomarevna, I., Naumov, I.Bellaiche, L.: Low-dimensional ferroelectrics under different electrical and mechanical boundary conditions: Atomistic simulations. Phys. Rev. B 72, 214118 2005CrossRefGoogle Scholar
66Ponomareva, I., Naumov, I., Kornev, I., Fu, H.Bellaiche, L.: Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys. Rev. B 72, 140102 2005CrossRefGoogle Scholar
67Prosandeev, S., Ponomareva, I., Kornev, I., Naumov, I.Bellaiche, L.: Controlling toroidal moment by means of an inhomogeneous static field: An ab initio study. Phys. Rev. Lett. 96, 237601 2006CrossRefGoogle Scholar