Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T14:03:26.641Z Has data issue: false hasContentIssue false

Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics

Published online by Cambridge University Press:  01 December 2004

Frédéric Monteverde*
Affiliation:
National Research Council – Institute of Science and Technology for Ceramics, 48018 Faenza, Italy
Alida Bellosi
Affiliation:
National Research Council – Institute of Science and Technology for Ceramics, 48018 Faenza, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

HfB2 and (ZrB2 + HfB2)-based ceramics containing 19.5 vol% SiC particulate were developed from commercially available powders by hot-pressing. With the assistance of 3 vol% HfN as sintering aid, after hot-pressing at 1900 °C and 50 MPa of applied pressure, full density in both the composites was successfully achieved. The materials revealed a homogeneous microstructure, characterized by faceted diboride grains(2 μm average size) and SiC particles regularly dispersed. Limited levels of secondary phases were found. The thermomechanical properties of the composites were promising: about 22 GPa microhardness and 500 GPa Young’s modulus for both. The HfB2–SiC composite showed values of strength of 650 ± 50 and 465 ± 40 MPa at 25 and 1500 °C, respectively. Likewise, the (ZrB2–HfB2)–SiC composite exhibited values of strength of 765 ± 20 and 250 ± 45 MPa at 25 and 1500 °C, respectively. The excellent response at high temperature in air was attributed to the refractoriness of the phases constituting the composites and to the resistance to oxidation enhanced by the presence of the SiC particulate.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Opeka, M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A. and Causey, S.J.: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).CrossRefGoogle Scholar
2Upadhya, K., Yang, J-M. and Hoffmann, W.P.: Materials for ultra-high temperatures structural applications. Am. Ceram. Soc. Bull. 58, 51 (1997).Google Scholar
3Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M. and Salem, J.A.: Evaluation of ultra high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757 (2002).CrossRefGoogle Scholar
4Loehman, R.. Ultrahigh-temperature ceramics for hypersonic vehicle applications. Industial Heating, January (2004).Google Scholar
5Wang, C.R., Yang, J-M. and Hoffmann, W.P.: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74, 272 (2002).CrossRefGoogle Scholar
6Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E. and Ellerby, D.T.: High-strength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 87, 1170 (2004).CrossRefGoogle Scholar
7Bull, J.D., Rasky, D.J., and Karika, J.C.: Stability characterization of diboride composites under high velocity atmospheric flight conditions. In 24th Int. SAMPE Technical Conference (Toronto, Canada, Oct. 20–22, 1992), pp. T1092-1106.Google Scholar
8Melendez-Martines, J.J., Dominguez-Rodriguez, A., Monteverde, F., Melandri, C. and de Portu, G.: Characterization and high-temperature mechanical properties of zirconium boride-based materials. J. Eur. Cer. Soc. 22, 2543 (2002).CrossRefGoogle Scholar
9Woo, S-K., Han, I-S., Kim, H-S., Kang, E-S., Yang, J.H. and Kim, C-H.: Sintering of zirconium diboride through Fe-based liquid phase. J. Kor. Ceram. Soc. 33, 259 (1996).Google Scholar
10Monteverde, F. and Bellosi, A.: Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scripta Mater. 46, 223 (2002).CrossRefGoogle Scholar
11Pastor, H. Metallic borides: Preparation of solid bodies—sintering methods and properties of solid bodies, in Boron and Refractory Borides, edited by Matkovich, V.I., (Springer Verlag, New York, NY, 1997), pp.457493Google Scholar
12Zhang, G-J., Deng, Z-Y., Kondo, N., Yang, J-F. and Ohji, T.: Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).CrossRefGoogle Scholar
13Monteverde, F. and Bellosi, A.: Advances in microstructure and mechanical properties of zirconium diboride-based ceramics. Mater. Sci. Eng. A 346, 310 (2003).CrossRefGoogle Scholar
14 J. Bull, M.J. White, and L. Kaufman: Ablation resistant zirconium and hafnium ceramics. U.S. Patent No. 5 750 450 (1998).Google Scholar
15Monteverde, F. and Bellosi, A.: Oxidation of ZrB2 based ceramics in dry air. J. Electrochem. Soc. 150, B552 (2003).CrossRefGoogle Scholar
16Hinze, J.W., Tripp, W.C. and Graham, H.C.: The high-temperature oxidation behaviour of a HfB2+20v/o SiC composite. J. Electrochem. Soc. 122, 1249 (1975).CrossRefGoogle Scholar
17Tripp, W.C., Davis, H.H. and Graham, H.C.: Effect of an SiC addition on the oxidation of ZrB2. Am. Ceram. Soc. Bull. 52, 612 (1973).Google Scholar
18Monteverde, F. and Bellosi, A.: Microstructure and properties of a HfB2-SiC composite for ultra-high temperature applications. Adv. Eng. Mater. 6, 331 (2004).CrossRefGoogle Scholar
19Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
20 A. Roine: HSC Chemistry for Windows 5.1, Outokumpu Research Oy, Pori, Finland.Google Scholar
21Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A., Debuigne, J. and Groboth, G.: Solid state properties of group IVb carbonitrides. J. Alloys Compd. 217, 137 (1995).CrossRefGoogle Scholar
22Monteverde, F., Bellosi, A. and Guicciardi, S.: Processing and properties of zirconium diboride based composites. J. Eur. Ceram. Soc. 22, 279 (2002).CrossRefGoogle Scholar
23Cutler, R.A. Engineering properties of borides, in Engineered Materials Handbook, Vol. 4, edited by Schneider, S.J. (ASM International, Materials Park, OH, 1991), pp. 787803Google Scholar
24Baik, S. and Becher, P.F.: Effect of oxygen contamination on densification of TiB2. J. Am. Cer. Soc. 70, 527 (1987).CrossRefGoogle Scholar
25Torizuka, S., Sato, K., Nishio, H. and Kishi, T.: Effect of SiC on interfacial reaction and sintering mechanism of TiB2. J. Am. Ceram. Soc. 78, 1606 (1995).CrossRefGoogle Scholar
26Pastor, H.: Titanium carbonitride based hard alloys for cutting tools. Mater. Sci. Eng. A 105, 401 (1988).CrossRefGoogle Scholar
27Øvrebø, D.N. and Riley, F.L.: Densification of zirconium diboride, in Conference & Exhibition of 6th ECerS, Extended Abstracts 2 British Ceramic Proceedings No. 60 (IOM Communications Ltd., London, U.K., 1999), pp.19–20.Google Scholar
28Wang, H., Fu, Z.Y., Gu, P., Wang, W.H. and Yuan, R.Z.: Mechanical properties and microstructure of TiB2 ceramic influenced by ZrB2 additive. Trans. Non-ferrous Met. Soc. China 12, 909 (2002).Google Scholar
29Li, L-H., Kim, H-E. and Kang, E.S.: Sintering and mechanical properties of titanium diboride with aluminium nitride as a sintering aid. J. Eur. Ceram. Soc. 22, 973 (2002).CrossRefGoogle Scholar
30Pan, M-J., Hoffman, P.A., Green, D.J. and Hellmann, J.R.: Elastic properties and microstructure behaviour of particulate titanium diboride-silicon carbide composites. J. Am. Ceram. Soc. 80, 692 (1997).CrossRefGoogle Scholar
31Mishra, S.K., Das, S. and Ramchandraras, P.: Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder. J. Mater. Res. 17, 2809 (2002).CrossRefGoogle Scholar
32Schmalzreid, C., Telle, R., Freitag, B. and Mader, W.: Solid state reactions in transition metal diboride based materials. Z. Metallkd. 92, 1197 (2001).Google Scholar
33Torquato, S.: Modelling of physical properties of composites materials. Int. J. Solids Struct. 37, 411 (2000).CrossRefGoogle Scholar
34Kalish, D., Clougherty, E.V. and Kreder, K.: Strength fracture mode and thermal stress resistance of HfB2 and ZrB2. J. Am. Ceram. Soc. 52, 30 (1969).CrossRefGoogle Scholar
35Quinn, J.B. and Quinn, G.D.: Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 32, 4331 (1997).CrossRefGoogle Scholar
36Yang, Q., Lengauer, W., Koch, T., Scheerer, M. and Smid, I.: Hardness and elastic properties of TiCXN1-X, ZrCXN1-X, and HfCX N1-X. J. Alloys Compd. 309, L5 (2000).CrossRefGoogle Scholar
37Irwin, G.R. Fracture, in Handbuch der Physik. 6 (Springer-Verlag, Berlin, Germany, 1958), p. 551.Google Scholar