Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:42:05.687Z Has data issue: false hasContentIssue false

Effects of the band offset on interfacial deep levels

Published online by Cambridge University Press:  31 January 2011

Richard P. Beres
Affiliation:
Department of Physics, Texas A & M University, College Station, Texas, 77843
Roland E. Allen
Affiliation:
Department of Physics, University of Notre Dameb) Notre Dame, Indiana 46556 and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
John D. Dow
Affiliation:
Department of Physics, University of Notre Dameb) Notre Dame, Indiana 46556 and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

The energy levels of antisite defects at a GaAs/Ge (110) interface are calculated and shown to be essentially unaltered with respect to the GaAs valence band maximum by different choices of the valence band offset.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hjalmarson, H. P.Allen, R. E.Buttner, H. and Dow, J. D.J. Vac. Sci. Technol. 17, 993 (1980).CrossRefGoogle Scholar
2Allen, R. E.Buisson, J. P. and Dow, J. D.Appl. Phys. Lett. 39, 975 (1981).CrossRefGoogle Scholar
3Allen, R. E.Beres, R. P. and Dow, J. D.J. Vac. Sci. Technol. B1, 401 (1983).Google Scholar
4Dow, J. D.Allen, R. E.Sankey, O. F.Buisson, J. P. and Hjalmarson, H. P.J. Vac. Sci. Technol. 18, 502 (1981).Google Scholar
5For this notation, see Cotton, F. A.Chemical Applications of Group Theory (Wiley-Interscience, New York, 1971), 2nd ed.Google Scholar
6For this group theoretical notation, see Tinkham, M.Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).Google Scholar
7Dow, J. D. in Highlights of Condensed-Matter Theory, edited by Bassani, F., Fumi, F., and Tosi, M. P. (Societa Italiana di Fisica, Bologna, Italy, and North-Holland, Amsterdam, 1985), pp. 465494.Google Scholar
8Madhukar, A. and Sarma, S. Das, J. Vac. Sci. Technol. 17, 1120 (1980).CrossRefGoogle Scholar
9Pollmann, J. in Festkbrperprobleme, edited by Treusch, J. (Vieweg, Braunstein, 1980), Vol. XX, p. 117.CrossRefGoogle Scholar
10Daw, M. S. and Smith, D. L.Phys. Rev. B20, 5150 (1979); J. Vac. Sci. Technol. 17, 1028 (1980); Appl. Phys. Lett. 36, 690 (1980); Solid State Commun. 37,205 (1981); M. S. Daw, D. L. Smith, C. A. Swarts, and T. C. McGill, J. Vac. Sci. Technol. 19, 508 (1981).Google Scholar
11Allen, R. E. and Dow, J. D., Phys. Rev. B25, 1423 (1982); R. E. Allen and J. D. Dow, J. Vac. Sci. Technol. 19, 383 (1981); R. E. Allen and J. D. Dow, Applications Surf. Sci. 11/12, 362 (1982); J. D. Dow and R. E. Allen, J. Vac. Sci. Technol. 20, 659 (1982); R. E. Allen, H. P. Hjalmarson, and J. D. Dow, Solid State Commun. 41, 419 (1982); O. F. Sankey, R. E. Allen, and J. D. Dow, Solid State Commun. 49, 1 (1984); M. A. Bowen, R. E. Allen, and J. D. Dow, Phys. Rev. B 30, 4617 (1984); R. E. Allen, T. J. Humphreys, J. D. Dow, and O. F. Sankey, J. Vac. Sci. Technol. B 2, 449 (1984); O. F. Sankey, R. E. Allen, and J. D. Dow, J. Ultramicroscopy 14, 127 (1984); O. F. Sankey, R. E. Allen, and J. D. Dow, J. Vac. Sci. Technol. B 2,491 (1984); O. F. Sankey, R. E. Allen, S. F. Ren, and J. D. Dow, J. Vac. Sci. Technol. B 3, 1162 (1985); O. F. Sankey, R. E. Allen, and J. D. Dow, Proceedings of the 17th International Conference on Physics of Semiconductors, edited by D. J. Chadi and W. A. Harrison (Springer-Verlag, New York, 1985), pp. 189; J. D. Dow, O. F. Sankey, and R. E. Allen, Appl. Surf. Sci. 22/23, 937 (1985); J. D. Dow, O. F. Sankey, and R. E. Allen, Mater. Sci. Forum 4, 39 (1985); R. E. Allen, O. F. Sankey, and J. D. Dow, Surf. Sci. 168,376(1986).Google Scholar
12Vogl, P.Hjalmarson, H. P., and Dow, J. D.J. Phys. Chem. Solids 44, 365 (1983).CrossRefGoogle Scholar
13Hjalmarson, H. P.Vogl, P.Wolford, D. J. and Dow, J. D.Phys. Rev. Lett. 44, 810 (1980); See also, W. Y. Hsu J. D. Dow, D. J. Wolford and B. G. Streetman Phys. Rev. B 16, 1597 (1977).CrossRefGoogle Scholar
14Beres, R. P. Ph.D. thesis, Texas A & M University, 1982 (unpublished).Google Scholar
15Frensley, W. R. and Kroemer, H.J. Vac. Sci. Technol. 13, 810 (1976).CrossRefGoogle Scholar
16Harrison, W. A.Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
17Anderson, R. L.Hung. Acad. Sci. 2, 55 (1970); Proceedings of the International Conference on Semiconductor Physics, Prague, 1960 (Academic, New York, 1961), p. 563.Google Scholar
l8See, for example, the series of articles in the Proceedings of the 18th International Conference on the Physics of Semiconductors, Stockholm, Sweden, 1115 August, 1986, edited by Engstrom, Olof (World Scientific, Singapore, 1987), pp. 155 ff.Google Scholar
19Ren, S. Y.Hu, W. M.Sankey, O. F. and Dow, J. D.Phys. Rev. B26, 951 (1982).Google Scholar
20Ren, S. Y.Sci. Sin. 27, 443 (1984).Google Scholar
21See, for example, Schiff, L. I.Quantum Mechanics (McGraw-Hill, New York, 1968), 3rd ed., p. 246.Google Scholar