Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:05:51.506Z Has data issue: false hasContentIssue false

Effects of seeding on phase transformation and mechanical properties in complex-alkoxide-derived cordierite gel powder

Published online by Cambridge University Press:  31 January 2011

Masahiko Okuyama*
Affiliation:
Colloid Research Institute, Kitakyushu 805 Japan
Toshimi Fukui*
Affiliation:
Colloid Research Institute, Kitakyushu 805 Japan
Chihiro Sakurai*
Affiliation:
Colloid Research Institute, Kitakyushu 805 Japan
*
a)Now with NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan.
b)Now with Kurosaki-Refractories Co., Ltd., Kitakyushu, Japan.
c)Now with Nippon Steel Corporation, Kawasaki, Japan.
Get access

Abstract

Cordierite gel powder prepared by the hydrolysis of an alkoxide complex was seeded with crystalline α-cordierite particles. The effects of seeding on the phase transformation and mechanical properties were studied. The unseeded cordierite gel powder crystallized into α-cordierite via μ-cordierite at 1050 °C. The μ-α cordierite transformation caused microcracks which led to poor flexural strengths of about 30 MPa, although the strength of μ-cordierite was 160 MPa. The seeding appeared to promote a direct formation of the α-cordierite from the amorphous state. The development of microcracks due to μ-α cordierite transformation could be prevented by the modified crystallization behavior, resulting in the improved flexural strength of α-cordierite of 190 MPa. The seeding also lowered the crystallization temperature of α-cordierite to 900 °C, which could be attributed to the epitaxial crystallization of the complex-alkoxide-derived cordierite gel powder.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kumar, A. H., McMillan, P. W., and Turmmala, R. R., U.S. Pat. No. 4301324, November 17, 1981.Google Scholar
2.Bernier, J. C., Rehspringer, J. L., Vilminot, S., and Poix, P., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 129.Google Scholar
3.Gensse, C. and Chowdhry, U., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 693.Google Scholar
4.Suzuki, H., Ota, K., and Saito, H., Yogyo-Kyokai-Shi 95 (2), 163 (1987).CrossRefGoogle Scholar
5.Hardy, A. B., Gowda, G., McMahon, T. J., Riman, R. E., Rhine, W. E., and Bowen, H. K., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, New York, 1988), p. 407.Google Scholar
6.McMahon, T. J., Thesis, M. S., Dept. of Mater. Sci. and Eng., MIT, Cambridge, MA (1987).Google Scholar
7.Babonneau, F., Coury, L., and Livage, J., J. Non-Cryst. Solids 121, 153 (1990).CrossRefGoogle Scholar
8.Selvaraj, U., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 73 (12), 3663 (1990).CrossRefGoogle Scholar
9.Okuyama, M., Fukui, T., and Sakurai, C., Proc. 1st Int. Ceram. Sci. & Tech. Cong. (Anaheim, CA, 1989).Google Scholar
10.Okuyama, M., Fukui, T., and Sakurai, C., J. Am. Ceram. Soc. 75 (1), 153 (1992).CrossRefGoogle Scholar
11.Mussler, B. H. and Shafer, M. W., Am. Ceram. Soc. Bull. 64 (11), 1459 (1985).Google Scholar
12.Barry, T. I., Cox, J. M., and Morrell, R., J. Mater. Sci. 13, 594 (1978).CrossRefGoogle Scholar
13.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 68 (9), 500 (1985).CrossRefGoogle Scholar
14.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67 (11), C230 (1984).CrossRefGoogle Scholar
15.Shelleman, R. A., Messing, G. L., and Kumagai, M., J. Non-Cryst. Solids 82, 277 (1986).CrossRefGoogle Scholar
16.Roy, R., Komarneni, S., and Yarbrough, W., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, New York, 1988), p. 571.Google Scholar
17.Roy, R., Suwa, Y., and Komarneni, S., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, New York, 1986), p. 247.Google Scholar
18.Kazakos, A. M., Komarneni, S., and Roy, R., J. Mater. Res. 5, 1095 (1990).CrossRefGoogle Scholar
19.Selvaraj, U., Komarneni, S., and Roy, R., J. Mater. Sci. 26, 3689 (1991).CrossRefGoogle Scholar
20.Suzuki, H., Ota, K., and Saito, H., J. Mater. Sci. 23, 1534 (1988).CrossRefGoogle Scholar