Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T06:34:16.824Z Has data issue: true hasContentIssue false

Effects of plastic deformation and hydrogen charging on the internal friction in bulk and ribbon metallic glasses Zr52.5Cu17.9Ni14.6Al10Ti5 and Pd40Cu30Ni10P20

Published online by Cambridge University Press:  03 March 2011

M. Eggers
Affiliation:
Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
H.-R. Sinning
Affiliation:
Institut für Werkstoffe, Technische Universität Braunschweig, 38106 Braunschweig, Germany
V.A. Khonik
Affiliation:
Department of General Physics, State Pedagogical University, Voronezh 394043, Russia
H. Neuhäuser*
Affiliation:
Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two different types of metallic glasses, a metal-metal-based and a metal-metalloid-based one, in both bulk and ribbon form (i.e., produced with very different quenching rates) are compared with respect to their structural relaxation behavior during continuous heating (2 K/min) in a vibrating-reed set-up (frequencies 0.2–5 kHz). The variation of damping as a function of temperature, time, and strain amplitude is shown as a measure of the content of structural relaxation centers, whose nature is studied by means of artificially introduced irregularities into the amorphous structure (i.e., by cold rolling and by hydrogen charging). The results indicate that the hydrogen damping peak, which is only observed in the Zr-based glass, is more probably due to hydrogen reorientation jumps than due to reorientation of hydrogen-related, dislocation-like distortion fields although the latter cannot be ruled out. A pronounced deformation damping peak could not be found in contrast to earlier results in the literature, probably owing to the selected degrees of deformation.

Type
Reviews
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Egami, T.: Atomic short-range ordering in amorphous metal alloys, in Amorphous Metallic Alloys Chapter 7, edited by Luborsky, F.E. (Butterworth, London, 1983) p. 100.CrossRefGoogle Scholar
2Egami, T.: Formation and deformation of metallic glasses: Atomistic theory. Intermetallics 14, 382 (2006).CrossRefGoogle Scholar
3Bothe, K. and Neuhäuser, H.: Study of structural relaxation in metallic glasses by modulus measurements. Scripta Mater. 16, 1055 (1982).Google Scholar
4Gibbs, M.J.R., Evetts, J.E., and Leake, L.A.: Activation energy spectra and relaxation in amorphous materials. J. Mater. Sci. 18, 278 (1983).CrossRefGoogle Scholar
5Knuyt, G., Stulens, H., de Cueninck, W., Bex, G.J., and Stals, L.M.: A simple method of calculating an energy spectrum from isothermal measurements, using Fourier techniques. Philos. Mag. B 65, 1053 (1992).CrossRefGoogle Scholar
6Neuhäuser, H., Bothe, K., and Obert, M.: Internal friction and structural relaxation in metallic glasses, in Proc. 9th ICIFUAS Beijing, edited by , T.S. (Pergamon Press, Oxford, 1990) p. 233.Google Scholar
7Khonik, V.A.: The kinetics of irreversible structural relaxation and homogeneous plastic flow in metallic glasses. Phys. Status Solidi A 177, 173 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
8Belyavskii, V.I., Bobrov, O.P., Kosilov, A.T., and Khonik, V.A.: Directional structural relaxation and low-frequency internal friction of as-quenched metallic glasses. Phys. Sol. St. (St.Petersburg). 38, 16 (1996).Google Scholar
9Bothe, K. and Neuhäuser, H.: Relaxation of metallic glass structure measured by elastic modulus and internal friction. J. Non-Cryst. Solids 56, 279 (1983).CrossRefGoogle Scholar
10Kronmüller, H. and Moser, N.: Magnetic after-effects and the hysteresis loop, in Amorphous Metallic Alloys edited by Luborsky, F.E. (Butterworth, London, 1983) p. 341.CrossRefGoogle Scholar
11Kronmüller, H.: Theory of magnetic after-effects in ferromagnetic amorphous alloys. Philos. Mag. B 48, 127 (1983).CrossRefGoogle Scholar
12Turnbull, D. and Cohen, M.H.: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 (1961).CrossRefGoogle Scholar
13Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 (1977).CrossRefGoogle Scholar
14Taub, A.I. and Spaepen, F.: The kinetics of structural relaxation of a metallic glass. Acta Mater. 28, 1781 (1980).CrossRefGoogle Scholar
15Chaudhari, P., Spaepen, F., and Steinhardt, P.J.: Defects and atomic transport in metallic glasses, in Glassy Metals II: Atomic Structure and Dynamics, Electronic Structure, Magnetic Properties edited by Beck, H., Güntherodt, H.-J. (Springer, Berlin, 1983) p. 127.CrossRefGoogle Scholar
16Egami, T., Maeda, K., and Vitek, V.: Structural defects in amorphous solids. A computer simulation study. Philos. Mag. A 41, 883 (1980).CrossRefGoogle Scholar
17Srolovitz, D., Maeda, K., Vitek, V., and Egami, T.: Structural defects in amorphous solids. Statistical analysis of a computer model. Philos. Mag. A 44, 847 (1981).CrossRefGoogle Scholar
18Schober, H.R.: Collectivity of motion in undercooled liquids and amorphous solids. J. Non-Cryst. Solids 307–310, 40 (2002).CrossRefGoogle Scholar
19Teichler, H.: Structural dynamics on the μs scale in molecular-dynamics simulated, deeply undercooled, glass-forming Ni0.5Zr0.5. J. Non-Cryst. Solids 293, 339 (2001).CrossRefGoogle Scholar
20Teichter, H.: Change of dynamical cooperativity in the glass-transition regime: Computer modeling results for Ni0.5Zr0.5. J. Non-Cryst. Solids 312–314, 503 (2002).Google Scholar
21Rambousky, R., Moske, M., and Samwer, K.: Structural relaxation and viscous flow in amorphous ZrAlCu. Z. Phys. B 99, 387 (1996).CrossRefGoogle Scholar
22Weiss, M., Moske, M., and Samwer, K.: Anelastic relaxation behavior and thermal stability of undercooled metals in the amorphous Zr65AlxCu35-x system. Phys. Rev. B 58, 9062 (1998).CrossRefGoogle Scholar
23Meyer, A.: Atomic transport in dense multicomponent metallic liquids. Phys. Rev. B 66, 134205 (2002).CrossRefGoogle Scholar
24Sinning, H-R.: Internal-friction peaks of hydrogen in amorphous and crystalline Co33Zr67. J. Phys.: Condens. Matter 3, 2005 (1991).Google Scholar
25Sinning, H-R., Steckler, G., and Scarfone, R.: Some current aspects of anelastic relaxation by hydrogen diffusion in metals. Def. Diff. Forum 167–168, 1 (1999).CrossRefGoogle Scholar
26Winter, F., Adam, S., and Sinning, H-R.: Influence of composition and plastic deformation on the hydrogen internal friction peak in amorphous Co-Zr alloys. J. Phys. IV Coll.C8, Suppl. III 6, C8-55 (1996).Google Scholar
27Khonik, V.A. and Spivak, L.V.: On the nature of low temperature internal friction peaks in metallic glasses. Acta Mater. 44, 367 (1996).CrossRefGoogle Scholar
28Eggers, M., Khonik, V.A., and Neuhäuser, H.: Comparing irreversible and reversible structural relaxation in bulk and ribbon metallic glasses Zr52.2Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20 by mechanical spectroscopy. Solid St. Phenom. 115, 139 (2006).CrossRefGoogle Scholar
29Harms, U., Kempen, L., and Neuhäuser, H.: Vibrating reed apparatus with optical detection and digital signal processing; Application to measurements on thin films. Rev. Sci. Instr. 70, 1751 (1999).CrossRefGoogle Scholar
30Bobrov, O.P., Khonik, V.A., Laptev, S.N., and Yazvitsky, M.Yu.: Comparative internal friction study of bulk and ribbon glassy Zr52.2Ti5Cu17.9Ni14.6Al10. Scripta Mater. 49, 255 (2003).CrossRefGoogle Scholar
31Berlev, A.E., Bobrov, O.P., Khonik, V.A., Csach, K., Jurikova, A., Miskuf, J., Neuhäuser, H., and Yazwitsky, Y.: The viscosity of bulk and ribbon Zr-based glass well below and in the vicinity of Tg: A comparative study. Phys. Rev. B 68, 132303 (2003).CrossRefGoogle Scholar
32Harms, U.: Optimizing mechanical spectroscopy for investigations on thin films. Ph.D. Thesis, Technical University of Braunschweig 1999 (in German).Google Scholar
33Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
34Haessner, F. and Speitling, A.: Cold rolling of ribbons of amorphous metals. Z. Metallkd. 74, 763 1983 (in German).Google Scholar
35Sinning, H-R. and Haessner, F.: Determination of the glass transition temperature of metallic glasses by low-frequency internal friction measurements. J. Non-Cryst. Solids 93, 53 (1987).CrossRefGoogle Scholar
36Bobrov, O.P., Fursova, Yu.V., and Khonik, V.A.: Experimental evidence of Snoek-like relaxation in annealed metallic glass. Mater. Sci. Eng., A 370, 341 (2004).CrossRefGoogle Scholar
37Kempen, L., Harms, U., Neuhäuser, H., Scholz, D., Peiner, E., and Schlachetzki, A.: Internal friction of amorphous Zr65Al7.5Cu27.5 films. J. Phys. IV Coll C8. 6, C8-643 (1996).Google Scholar
38Alefeld, G. and (eds.), J. Völkl: Hydrogen in Metals I—Basic Properties; II—Application-Oriented Properties (Springer, Berlin, 1978).Google Scholar
39Kirchheim, R., Sommer, F., and Schluckebier, G.: Hydrogen in amorphous metals I. Acta Mater. 30, 1059 (1980).CrossRefGoogle Scholar
40Kirchheim, R.: Solubility, diffusivity and trapping of hydrogen in dilute alloys, deformed and amorphous metals II. Acta Mater. 30, 1069 (1982).CrossRefGoogle Scholar
41Stolz, U., Weller, M., and Kirchheim, R.: Internal friction of hydrogen in amorphous Ni35Ti65. Scripta Mater. 20, 1361 (1986).CrossRefGoogle Scholar
42Zolotukhin, I.V., Belyavskii, V.I., and Khonik, V.A.: Relaxation phenomena in plastically deformed amorphous alloy Pd77.5Cu6Si16.5. Sol. Phys. Solid State 27, 1072 (1985).Google Scholar
43Zolotukhin, I.V., Belyavskii, V.I., Khonik, V.A., and Ryabtseva, T.N.: Internal friction in cold-rolled metallic glasses Cu50Ti50 and Ni78Si8B14. Phys. Status Solidi A 116, 255 (1989).CrossRefGoogle Scholar
44Palmer, R.G., Stein, D.K., Abrahams, E., and Anderson, P.W.: Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett. 53, 958 (1984).CrossRefGoogle Scholar
45Krueger, P., Kempen, L., and Neuhäuser, H.: Determination of the effective attempt frequency of irreversible structural relaxation processes in amorphous alloys by anisothermal measurements. Phys. Status Solidi A 131, 391 (1992).CrossRefGoogle Scholar
46Krueger, P., Stucky, Th., Möwe, M., and Neuhäuser, H.: On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys. Phys. Status Solidi A 135, 467 (1993).CrossRefGoogle Scholar
47Rösner, P., Weiss, M., Schneider, S., and Samwer, K.: Dynamic heterogeneities in the glassy and undercooled states of the amorphous system Zr65AlxCu35–x. J. Non-Cryst. Solids 307–310, 848 (2002).CrossRefGoogle Scholar
48Zener, C.: Internal friction in solids. II. General theory of the thermoelastic internal friction. Phys. Rev. 53, 90 (1938).CrossRefGoogle Scholar
49Nowick, A.S. and Berry, B.S.: Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).Google Scholar
50Lifshitz, R. and Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600 (2000).CrossRefGoogle Scholar
51Eggers, M.: Vibrating-reed measurements to investigate structural relaxation in bulk metallic glasses and amorphous ribbons. Diploma thesis, Technical University of Braunschweig 2004 (in German).Google Scholar
52Berry, B.S., Pritchet, W.C., and Tsuei, C.C.: Discovery of an internal-friction peak in the metallic glass Nb3Ge. Phys. Rev. Lett. 41, 410 (1978).CrossRefGoogle Scholar
53Sinning, H-R.: Hydrogen in intermetallic phases: Reorientation relaxation and mechanical spectroscopy. Def. Diff. Forum 123–124(1995).Google Scholar
54Sinning, H-R., Anelastic relaxation of hydrogen in intermetallic structures, Habilitation thesis, Technical University of Braunschweig, Verlag Mainz, Wissenschaftsverlag, Aachen 1994 (in German).Google Scholar
55Sinning, H-R.: Hydrogen-induced damping peak temperatures in bulk metallic glasses. Key Eng. Mater. 319, 127 (2006).CrossRefGoogle Scholar
56Sinning, H-R.: On the concentration dependence of the hydrogen reorientation relaxation in amorphous alloys. Phys. Status Solidi A 140, 97 (1993).CrossRefGoogle Scholar
57Ulfert, W. and Kronmüller, H.: The role of Fermi-Dirac statistics in hydrogen internal friction in amorphous alloys. Phys. Lett. A 134, 385 (1989).CrossRefGoogle Scholar
58Berry, B.S. and Pritchet, W.C.: Anelastic behavior of hydrogenated amorphous metals. Z. Phys. Chem. Neue Folge. 163, 381 (1989).CrossRefGoogle Scholar
59Takeuchi, S., Yagi, T., Imai, T., and Tamura, R.: Internal friction of hydrogen-doped metallic glasses. Mater. Sci. Eng., A 375–377, 455 (2004).CrossRefGoogle Scholar
60Bobrov, O.P. and Khonik, A.V.: Inhomogeneous flow via dislocations in metallic glasses: A survey of experimental evidence. J. Non-Cryst. Solids 192–193, 603 (1995).CrossRefGoogle Scholar