Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:45:50.229Z Has data issue: false hasContentIssue false

Effects of implantation temperature on the structure, composition, and oxidation resistance of aluminum-implanted SiC

Published online by Cambridge University Press:  03 March 2011

Zunde Yang
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
Honghua Du
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
Matthew Libera
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
Irwin L. Singer
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington DC 20375
Get access

Abstract

α-SiC crystals were implanted with aluminum to a high dose at room temperature or 800 °C. Transmission electron microscopy showed that SiC was amorphized by room temperature implantation but remained crystalline after 800 °C implantation. Crystalline aluminum carbide was formed and aluminum redistribution took place in SiC implanted at 800 °C. Implanted and unimplanted crystals were oxidized in 1 atm flowing oxygen at 1300 °C. Amorphization led to accelerated oxidation of SiC. The oxidation resistance of SiC implanted at 800 °C was comparable with that of pure SiC. The oxidation layers formed on SiC implanted at both temperatures consisted of silica embedded with mullite precipitates. The phase formation during implantation and oxidation is consistent with thermodynamic predictions. The results from our current and earlier studies suggest that there exists an optimum range of implantation temperature, probably above 500 °C but below 800 °C, which preserves the substrate crystallinity and retains the high aluminum dosage, for the enhancement of oxidation resistance of SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yang, Z., Du, H., Libera, M., Withrow, S. P., Casas, L. M., and Lareau, R. T., in Covalent Ceramics II: Non-Oxides, edited by Barron, A. R., Fischraan, G. S., Fury, M. A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 281.Google Scholar
2Yust, C. S. and McHargue, C. J., J. Am. Ceram. Soc. 67, 117 (1984).Google Scholar
3Burnett, P. J. and Page, T. F., J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
4Hioki, T., Itoh, A., Ohkubo, M., Noda, S., Doi, H., Kawamoto, J., and Kamigaito, O., J. Mater. Sci. 21, 1328 (1986).CrossRefGoogle Scholar
5Burnett, P. J. and Page, T. F., in Science of Hard Materials, edited by Almond, E.A. (Adam Hilger, London, 1986), p. 789.Google Scholar
6Burnett, P. J. and Page, T. F., Radiat. Eff. 97, 283 (1986).CrossRefGoogle Scholar
7McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., and Naramoto, H., Mater. Sci. Eng. 69, 123 (1985).CrossRefGoogle Scholar
8Singer, I. L., Surf. Coating Technol. 33, 487 (1987).CrossRefGoogle Scholar
9Singer, I. L., Vardiman, R. G., and Gossett, C. R., in Fundamentals of Beam-Solid-Interactions and Transient Thermal Processing, edited by Aziz, M.J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 201.Google Scholar
10Singer, I. L. and Wandass, J. H., Structure-Property Relationships in Surface-Modified Ceramics, edited by McHargue, C. J. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), p. 199.CrossRefGoogle Scholar
11Du, H., Yang, Z., Libera, M., Jacobson, D., Wang, Y. C., and Davis, R. F., J. Am. Ceram. Soc. 76, 330 (1993).CrossRefGoogle Scholar
12Du, H., Yang, Z., Libera, M., Wang, Y. C., and Davis, R. F., J. Mater. Sci. Lett. (1995, in press).Google Scholar
13Ion Beam Profile Code, Version 3.20, Implant Science Corp. (1992).Google Scholar
14Bohn, H. G., Williams, J. M., McHargue, C.J., and Begun, G. M., J. Mater. Res. 2, 107 (1987).CrossRefGoogle Scholar
15McHargue, C.J. and Williams, J.M., Nucl. Instrum. Methods B 80/81, 889 (1993).CrossRefGoogle Scholar
16Heera, V., Kogler, R., Skorupa, W., and Stoemenos, J., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C. H. Jr., Gildenblat, G., Nakamura, S., and Nemanich, R.J. (Mater. Res. Soc. Symp. Proc. 339, Pittsburgh, PA, 1994).Google Scholar
17HSC Chemistry for Windows, Version 2.0, Outokumpu Research Oy, May, 1994.Google Scholar
18JANAF Thermochemical Tables, 2nd ed., edited by Stall, D.R., Prophet, H., Chao, J., Hu, A. T., Phillips, E. W., Karris, G. C., Wollert, S. K., Levine, S., Curnutt, J. L., Rizos, J. A., Justice, B. H., Oetting, F. L., Syverud, A. N., Dergazarian, T. E., Swanson, A. C., Webb, D. U., DuPlessis, L. A., Unger, H. K., Orehotsky, R. S., Petrella, R. V., Hadden, S. T., and Sinke, G. C. (U.S. Dept. of Commerce, National Bureau of Standards, Washington, DC, 1970).Google Scholar
19McHargue, C. J., Lewis, M. B., Williams, J. M., and Appleton, B. R., Mater. Sci. Eng. 69, 391 (1985).CrossRefGoogle Scholar
20Du, H., Libera, M., Yang, Z., Lai, P. J., Jacobson, D., Wang, Y. C., and Davis, R. F., Appl. Phys. Lett. 62, 423 (1993).CrossRefGoogle Scholar
21Dearnaley, G., Nucl. Instrum. Methods 182, 899 (1981).CrossRefGoogle Scholar
22Singer, I. L., Fayeulle, S., Ehni, P. D., and Vardiman, R.G., Appl. Phys. Lett. (1995, in press).Google Scholar