Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:04:08.798Z Has data issue: false hasContentIssue false

Effects of hydrogenated amorphous carbon interlayer on diamond nucleation

Published online by Cambridge University Press:  31 January 2011

W. S. Yang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science –784, Republic of Korea
T. S. Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science –784, Republic of Korea
Jung Ho Je*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science –784, Republic of Korea
*
a) Corresponding author [email protected].
Get access

Abstract

Diamond was deposited at 850 °C by microwave plasma chemical vapor deposition (CVD) on the interlayers with various intensity ratios (ID/IG) of the D band (~1400 cm-1) to the G band (~1570 cm-1) in the Raman spectra. Diamond could be grown only on the interlayers with higher ID/IG (≤1.95), and Nd was slightly increased to 3 × 106/cm2with ID/IG. The predeposition at 350 °C, which decreased the full-width at half-maximum of the broad D band, further increased Nd to 5 × 107/cm2. With 300 ÅA Pt overlayer on the interlayer, Nd was much more enhanced to 8 × 107/cm2. We suggest the sp3 bonded carbon clusters within the interlayer contribute to diamond nucleation, but they should be survived against atomic hydrogen etching during diamond deposition by increasing the sp3/sp2 ratio, by increasing the degree in clustering, or by protecting them with overlayer.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2.Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11 067 (1992).CrossRefGoogle Scholar
3.Setaka, N., Hyomen Surface 22, 110 (1984).Google Scholar
4.Yugo, S., Kimura, T., and Kanai, H., in Science and Technology of New Diamond, edited by S., Saito, O., Fukunaga, and M., Toshikawa (Terra Scientific Publishing Company, Tokyo, 1990), p. 119.Google Scholar
5.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
6.Mitsuda, Y., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
7.Bachmann, P. K., Drawl, W., Knight, D., Weimer, R., and Messier, R. F., in Diamond and Diamond-Like Materials Synthesis, Extended Abstracts No. 15, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Mater. Res. Soc. Symp. Proc., EA15, Pittsburgh, PA, 1988), p. 99.Google Scholar
8.Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., J. Cryst. Growth 121, 507 (1992).CrossRefGoogle Scholar
9.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
10.Sheldon, B. W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
11.Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
12.Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).CrossRefGoogle Scholar
13.Godbole, V. P. and Narayan, J., J. Mater. Res. 7, 2785 (1992).CrossRefGoogle Scholar
14.Meyer, D. E., Dillon, R. O., and A.Woollam, J., J. Vac. Sci. Technol. A 7, 2325 (1989).CrossRefGoogle Scholar
15.Dubray, J. J., Pantano, C. G., Meloncelli, M., and Bertran, E., J. Vac. Sci. Technol A 9, 3012 (1991).CrossRefGoogle Scholar
16.Morrishi, A. A. and Pehrsson, P. E., Appl. Phys. Lett. 59, 417 (1991).CrossRefGoogle Scholar
17.Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Mater. Res. 9, 2148 (1994).CrossRefGoogle Scholar
18.Feng, Z., Brewer, M. A., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Mater. Res. 10, 165 (1995).CrossRefGoogle Scholar
19.Feng, Z., Brewer, M. A., Bogy, D. B., Ager, J. W. III, Anders, S., Wang, Z., and Brown, I. G., J. Appl. Phys. 79, 485 (1996).CrossRefGoogle Scholar
20.Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., J. Mater. Res. 7, 2429 (1992).CrossRefGoogle Scholar
21.Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Appl. Phys. 74, 2841 (1993).CrossRefGoogle Scholar
22.Meilunas, R. J., Chang, R. P. H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
23.Shing, Y. H., Pool, F. S., and Rich, D. H., Thin Solid Films 212, 150 (1992).CrossRefGoogle Scholar
24.Yehoda, J. E., Fuentes, R. I., Tsang, J. C., Whitehair, S. J., Guarnieri, C. R., and Cuomo, J. J., Appl. Phys. Lett. 60, 2865 (1992).CrossRefGoogle Scholar
25.Shimada, Y., Mutsukura, N., and Machi, Y., Jpn. J. Appl. Phys. 31, 1958 (1992).CrossRefGoogle Scholar
26.Godbole, V. P. and Narayan, J., J. Appl. Phys. 71, 4944 (1992).CrossRefGoogle Scholar
27.Singh, J. and Vellaikal, M., Surf. Coat. Technol. 64, 131 (1994).CrossRefGoogle Scholar
28.Kirkpatrick, A. R., Ward, B. W., and Economou, N. P., J. Vac. Sci. Technol. B 7, 1947 (1989).CrossRefGoogle Scholar
29.Lin, S. J., Lee, S. L., Hwang, J., Chang, C. S., and Wen, H. Y., Appl. Phys. Lett. 60, 1559 (1992).CrossRefGoogle Scholar
30.Dubray, J. J., Yarbrough, W. A., and Pantano, C. G., in Proceedings of the NATO-ASI on Diamond and Diamondlike Films and Coatings, edited by B., Clausing, J., Angus, P., Koidal and L., Horton (Plenum, New York, 1991).Google Scholar
31.Tamaki, K., Watanabe, Y., Nakamura, Y., and Hirayama, S., Thin Solid Films 236, 115 (1993).CrossRefGoogle Scholar
32.Grannen, K. J. and Chang, R. P. H., J. Mater. Res. 9, 2154 (1994).CrossRefGoogle Scholar
33.Yu, Z-M., Rogelet, T., and Flodström, S. A., J. Appl. Phys. 74, 7235 (1993).CrossRefGoogle Scholar
34.Tamaki, K., Nakamura, Y., Watanabe, Y., and Hirayama, S., J. Mater. Res. 10, 431 (1995).CrossRefGoogle Scholar
35.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
36.Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P., Phys. Rev. B 40, 1817 (1989).CrossRefGoogle Scholar
37.Yoshikawa, M., Katagiri, G., Ishida, H., Ishitani, A., and Akamatsu, T., in Science and Technology of New Diamond, edited by S., Saito, O., Fukunaga, and M., Toshikawa (Terra Scientific Publishing Company, Tokyo, 1990), p. 445.Google Scholar
38.Lim, P. K., Gaspari, F., and Zukotynski, S., J. Appl. Phys. 78, 5307 (1995).CrossRefGoogle Scholar
39.Palshin, V., Meletis, E. I., Ves, S., and Logothetidis, S., Thin Solid Films 270, 165.Google Scholar
40.Setaka, N., in Proc. 10th Int. Conf. on Chemical Vapor Deposition, edited by Cullen, G. W. and Blocher, J. Jr (Electrochem. Soc., Pennington, NJ, 1987), p. 1156.Google Scholar
41.Aisenberg, S., J. Vac. Sci. Technol. A 8, 2150 (1990).CrossRefGoogle Scholar
42.Grill, A., Meyerson, B. S., Petel, V. V., Reimer, J. A., and Retrich, M. A., J. Appl. Phys. 61, 2874 (1987).CrossRefGoogle Scholar
43.Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35 & 36, 543 (1980).CrossRefGoogle Scholar
44.Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J. Appl. Phys. 54, 4590 (1983).CrossRefGoogle Scholar
45.Tatsuta, T., Tachibana, K., and Tsuji, O., Jpn. J. Appl. Phys. 33, 6341 (1994).CrossRefGoogle Scholar
46.Tamor, M. A. and Vassell, W. C., J. Appl. Phys. 76, 3823 (1994).CrossRefGoogle Scholar
47.Cheng, G., Gu, S., He, Y., Wang, Z., Xia, H., Zhang, W., and Zhang, X., Phys. Status Solidi A 139, 459 (1993).CrossRefGoogle Scholar
48.Yang, W. S. and Je, J. H., J. Mater. Res. 11, 1787 (1996).CrossRefGoogle Scholar
49.Dillon, R. O., Woollam, J. A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
50.Lee, J. J., Yang, W. S., and Je, J. H., J. Mater. Res. 12, 657 (1997).CrossRefGoogle Scholar