Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:00:32.593Z Has data issue: false hasContentIssue false

Effects of Ag variations on dynamic recrystallization, texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys

Published online by Cambridge University Press:  03 October 2016

Jie Feng*
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Hongfei Sun
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Xuewen Li
Affiliation:
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China
Han Wang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Wenbin Fang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; and School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, the effects of Ag variations on dynamic recrystallization (DRX), texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys are investigated. The results suggest that Ag segregation and Al–Zn–Ag clusters form in the Mg matrix with Ag addition less than 1 wt%, which retard DRX and the growth of the DRXed grains. The resulting grain size decreases from 513 to 316 nm. As the Ag addition increases to 2 wt%, the Mg54Ag17 phase precipitates along the grain boundary, which plays an important role in restricting DRXed grain growth via grain boundary pinning effect. The resulting grain size is 375 nm with a bimodal grain size distribution. The extrusion texture of the investigated alloys is in fairly scattered orientation distribution. The weak basal texture and ultrafine grain size lead to the high yield asymmetry ratio. The Ag-containing extruded alloys exhibit an increase in the tensile and compressive properties. The strengthening mechanisms due to grain refinement, dislocations, solid solution, precipitates, solute clusters, and segregation are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Mordike, B.L. and Ebert, T.: Magnesium: Properties-applications-potential. Mater. Sci. Eng., A 302, 3745 (2001).CrossRefGoogle Scholar
Park, S.H. and You, B.S.: Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg–7Sn–1Al–1Zn alloy. J. Alloys Compd. 637, 332338 (2015).Google Scholar
Vogel, M., Kraft, O., and Arzt, E.: Creep behavior of magnesium die-cast alloy ZA85. Scr. Mater. 48, 985990 (2003).Google Scholar
Gao, X., Zhu, S.M., Muddle, B.C., and Nie, J.F.: Precipitation-hardened Mg–Ca–Zn alloys with superior creep resistance. Scr. Mater. 53, 13211326 (2005).CrossRefGoogle Scholar
Park, S.H., Jung, J.G., Kim, Y.M., and You, B.S.: A new high-strength extruded Mg–8Al–4Sn–2Zn alloy. Mater. Lett. 139(15), 3538 (2015).Google Scholar
Estrin, Y., Nene, S.S., Kashyap, B.P., Prabhu, N., and Al-Samman, T.: New hot rolled Mg–4Li–1Ca alloy: A potential candidate for automotive and biodegradable implant applications. Mater. Lett. 173, 252256 (2016).Google Scholar
Homma, T., Kunito, N., and Kamado, S.: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61(6), 644647 (2009).Google Scholar
Jian, W.W., Cheng, G.M., Xu, W.Z., Yuan, H., Tsai, M.H., Wang, Q.D., Koch, C.C., Zhu, Y.T., and Mathaudhu, S.N.: Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett. 1, 6166 (2013).Google Scholar
Gao, X. and Nie, J.F.: Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scr. Mater. 58(8), 619622 (2008).CrossRefGoogle Scholar
Zhu, Y.M., Morton, A.J., and Nie, J.F.: Improvement in the age-hardening response of Mg–Y–Zn alloys by Ag additions. Scr. Mater. 58(7), 525528 (2008).CrossRefGoogle Scholar
Park, S.C., Lim, J.D., Eliezer, D., and Shin, K.S.: Microstructure and mechanical properties of Mg–Zn–Ag alloys. Mater. Sci. Forum 419–422, 159164 (2003).Google Scholar
Movahedi-Rad, A. and Mahmudi, R.: Effect of Ag addition on the elevated-temperature mechanical properties of an extruded high strength Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 614, 6266 (2014).Google Scholar
Ben-Hamu, G., Eliezer, D., Kaya, A., Na, Y.G., and Shin, K.S.: Microstructure and corrosion behavior of Mg–Zn–Ag alloys. Mater. Sci. Eng., A 435–436, 579587 (2006).Google Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization, and Related Annealing Phenomena (Elsevier Science Ltd., Oxford, United Kingdom, 1995).Google Scholar
Grey, E.A. and Higgins, G.T.: Solute limited grain boundary migration: A rationalisation of grain growth. Acta Metall. 21(4), 309321 (1973).Google Scholar
Hadorn, J.P., Hantzsche, K., Yi, S., Bohlen, J., Letzig, D., Wollmershauser, J.A., and Agnew, S.R.: Role of solute in the texture modification during hot deformation of Mg-rare earth alloys. Metall. Mater. Trans. A 43(4), 13471362 (2012).CrossRefGoogle Scholar
Galiyev, A., Kaibyshev, R., and Gottstein, G.: Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49(7), 11991207 (2001).Google Scholar
Kaibyshev, R. and Sitdikov, O.: 3rd Int. Conf. on Recrystallization and Related Phenomena (Monterey Inst. Advanced Studies, Monterey, CA, 1997); pp. 203209.Google Scholar
Cram, D.G., Fang, X.Y., Zurob, H.S., Bréchet, Y.J.M., and Hutchinson, C.R.: The effect of solute on discontinuous dynamic recrystallization. Acta Mater. 60(18), 63906404 (2012).Google Scholar
Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., and Jonas, J.J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130207 (2014).CrossRefGoogle Scholar
Beer, A.G. and Barnett, M.R.: Microstructural development during hot working of Mg–3Al–1Zn. Metall. Mater. Trans. A 38(8), 18561867 (2007).Google Scholar
Farzadfar, S.A., Martin, E., Sanjari, M., Essadiqi, E., and Yue, S.: Texture weakening and static recrystallization in rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys. J. Mater. Sci. 47, 54885500 (2012).CrossRefGoogle Scholar
Smith, C.S.: Grains, phases, and interfaces: An interpretation of microstructure. Trans. Am. Inst. Min. Eng. 175, 1551 (1948).Google Scholar
Feng, J., Sun, H.F., Li, J.C., Li, X.W., Zhang, J., Fang, W., and Fang, W.B.: Tensile flow and work hardening behaviors of ultrafine-grained Mg–3Al–Zn alloy at elevated temperatures. Mater. Sci. Eng., A 667, 97105 (2016).CrossRefGoogle Scholar
Berbeni, S., Favier, V., and Berveiller, M.: Micro–macro modeling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials. Comput. Mater. Sci. 39(1), 96105 (2007).Google Scholar
Chen, W.Z., Yu, Y., Wang, X., Wang, E.D., and Liu, Z.Y.: Optimization of rolling temperature for ZK61 alloy sheets via microstructure uniformity analysis. Mater. Sci. Eng., A 575, 136143 (2013).Google Scholar
Tsuzaki, K., Huang, X.X., and Maki, T.: Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel. Acta Mater. 44(11), 44914499 (1996).CrossRefGoogle Scholar
Gourdet, S. and Montheillet, F.: A model of continuous dynamic recrystallization. Acta Mater. 51(9), 26852699 (2003).CrossRefGoogle Scholar
Cahn, J.W.: The impurity-drag effect in grain boundary motion. Acta Metall. 10(9), 789798 (1962).CrossRefGoogle Scholar
Hadorn, J.P., Sasaki, T.T., Nakata, T., Ohkubo, T., Kamado, S., and Hono, K.: Solute clustering and grain boundary segregation in extruded dilute Mg–Gd alloys. Scr. Mater. 93, 2831 (2014).Google Scholar
Beck, P.A.: Recrystallization of lead. Trans. AIME 133, 222233 (1939).Google Scholar
Huang, X.F., Shi, Z.Z., and Zhang, W.Z.: Transmission electron microscopy investigation and interpretation of the morphology and interfacial structure of the ε′-Mg54Ag17 precipitates in an Mg–Sn–Mn–Ag–Zn alloy. J. Appl. Crystallogr. 47(5), 16761687 (2014).Google Scholar
Huang, X.F. and Zhang, W.Z.: Characterization and interpretation on the new crystallographic features of a twin-related ε′-Mg54Ag17 precipitates in an Mg–Sn–Mn–Ag–Zn alloy. J. Alloys Compd. 582, 764768 (2014).Google Scholar
Son, H.T., Kim, D.G., and Park, J.S.: Effects of Ag addition on microstructures and mechanical properties of Mg–6Zn–2Sn–0.4Mn-based alloy system. Mater. Lett. 65(19–20), 31503153 (2011).Google Scholar
Huang, X.F. and Zhang, W.Z.: Improved age-hardening behavior of Mg–Sn–Mn alloy by addition of Ag and Zn. Mater. Sci. Eng., A 552, 211221 (2012).Google Scholar
Jung, J.G., Park, S.H., and You, B.S.: Effect of aging prior to extrusion on the microstructure and mechanical properties of Mg–7Sn–1Al–1Zn alloy. J. Alloys Compd. 627, 324332 (2015).Google Scholar
Li, R.H., Pan, F.S., Jiang, B., Dong, H.W., and Yang, Q.S.: Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy. Mater. Sci. Eng., A 562, 3338 (2013).Google Scholar
Pérez-Prado, M.T., del Valle, J.A., and Ruano, O.A.: Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scr. Mater. 50(5), 667671 (2004).Google Scholar
Jia, W.P., Hu, X.D., Zhao, H.Y., Ju, D.Y., and Chen, D.L.: Texture evolution of AZ31 magnesium alloy sheets during warm rolling. J. Alloys Compd. 645, 7077 (2015).Google Scholar
Razavi, S.M., Foley, D.C., Karaman, I., Hartwig, K.T., Duygulu, O., Kecskes, L.J., Mathaudhu, S.N., and Hammond, V.H.: Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr. Mater. 67(5), 439442 (2012).Google Scholar
Shi, B.Q., Chen, R.S., and Ke, W.: Influence of grain size on the tensile ductility and deformation modes of rolled Mg–1.02 wt% Zn alloy. J. Magnesium Alloys 1(3), 210216 (2013).CrossRefGoogle Scholar
Kim, B., Park, C.H., Kim, H.S., You, B.S., and Park, S.S.: Grain refinement and improved tensile properties of Mg–3Al–1Zn alloy processed by low-temperature indirect extrusion. Scr. Mater. 76, 2124 (2014).Google Scholar
Zou, Y., Zhang, L.H., Wang, H.T., Tong, X., Zhang, M.L., and Zhang, Z.W.: Texture evolution and their effects on the mechanical properties of duplex Mg–Li alloy. J. Alloys Compd. 669, 7278 (2016).Google Scholar
Yang, Q., Bu, F.Q., Qiu, X., Li, Y.D., Li, W.R., Sun, W., Liu, X.J., and Meng, J.: Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy. J. Alloys Compd. 665, 240250 (2016).Google Scholar
Wang, S.C., Lefebvre, F., Yan, J.L., Sinclair, I., and Starink, M.J.: VPPA welds of Al-2024 alloys: Analysis and modelling of local microstructure and strength. Mater. Sci. Eng., A 431, 123136 (2006).Google Scholar
Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52(17), 50935103 (2004).Google Scholar
Mora, E., Garcés, G., Onǒrbe, E., Pérez, P., and Adeva, P.: High-strength Mg–Zn–Y alloys produced by powder metallurgy. Scr. Mater. 60, 776779 (2009).Google Scholar
Chen, Y., Gao, N., Sha, G., Ringer, S.P., and Starink, M.J.: Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Mater. 109, 202212 (2016).Google Scholar
Valiev, R.Z., Enikeev, N.A., Murashkin, M.Y., Kazykhanov, V.U., and Sauvage, X.: On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 63, 949952 (2010).Google Scholar
Valiev, R.Z., Enikeev, N.A., Murashkin, M.Y., Aleksandrov, S.E., and Goldshtein, R.V.: Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation. Dokl. Phys. 55, 267270 (2010).Google Scholar
Chen, Y., Gao, N., Sha, G., Ringer, S.P., and Starink, M.J.: Strengthening of an Al–Cu–Mg alloy processed by high-pressure torsion due to clusters, defects defect-cluster complexes. Mater. Sci. Eng., A 627, 1020 (2015).Google Scholar
Li, M.H., Yang, Y.Q., Feng, Z.Q., Feng, G.H., Huang, B., Chen, Y.X., Han, M., and Ru, J.G.: Influence of equal-channel angular pressing on aging precipitation in 7050 Al alloy. Intermetallics 55, 4955 (2014).Google Scholar
Kapoor, R., Kumar, N., Mishra, R.S., Huskamp, C.S., and Sankaran, K.K.: Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater. Sci. Eng., A 527, 52465254 (2010).CrossRefGoogle Scholar
Huppmann, M. and Reimers, W.: Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy. Int. J. Mater. Res. 101, 12641271 (2010).CrossRefGoogle Scholar
Xu, S.W., Oh-ishi, K., Kamado, S., Uchida, F., Homma, T., and Hono, K.: High-strength extruded Mg–Al–Ca–Mn alloy. Scr. Mater. 65(3), 269272 (2011).Google Scholar
Song, B., Xin, R.L., Guo, N., Xu, J.B., Sun, L.Y., and Liu, Q.: Dependence of tensile and compressive deformation behavior on aging precipitation in rolled ZK60 alloys. Mater. Sci. Eng., A 639, 724731 (2015).Google Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., Capolungo, L., Beyerleinb, I.J., and Tomé, C.N.: Nucleation of a ( $\bar 1012$ } twin in hexagonal close-packed crystals. Scr. Mater. 61(9), 903906 (2009).Google Scholar
Meyers, M.A., Vöhringer, O., and Lubarda, V.A.: The onset of twinning in metals: A constitutive description. Acta Mater. 49(19), 40254039 (2001).Google Scholar
Kleiner, S. and Uggowitzer, P.J.: Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng., A 379(1–2), 258263 (2004).Google Scholar
Xu, S.W., Oh-ishi, K., Sunohara, H., and Kamado, S.: Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Mater. Sci. Eng., A 558, 356365 (2012).Google Scholar