Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:50:28.130Z Has data issue: false hasContentIssue false

Effects of (100)-textured LaNiO3 Electrode on the Deposition and Characteristics of PbTiO3 Thin Films Prepared by rf Magnetron Sputtering

Published online by Cambridge University Press:  31 January 2011

Chii-Ming Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Tian-Jue Hong
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Tai-Bor Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Highly (100)-oriented thin films of PbTiO3 were prepared on (100)-textured LNO/Pt/Ti/SiO2/Si substrates by rf magnetron sputtering at temperatures ≥480 °C, while randomly oriented PbTiO3 films were obtained on Pt/Ti/SiO2/Si substrates. The textured LNO layer can help to control the orientation of PbTiO3 thin films, and reduce their surface roughness quite significantly. The dielectric constant (εT) of PbTiO3 films deposited on LNO was lower than that of films on Pt and the dielectric loss (tan δ) increased when a higher deposition temperature or longer time was used. The highly (100)-textured PbTiO3 films also showed different ferroelectric hysteresis characteristics, i.e., a higher coercive field and a lower remanent polarization, from that of randomly oriented films deposited on Pt.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, J. T. and Womack, R., IEEE J. Solid-State Circuits 23, 1171 (1988).CrossRefGoogle Scholar
2.Scott, J. F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shamabken, A., and Oliver, W. F., J. Appl. Phys. 64, 787 (1988).CrossRefGoogle Scholar
3.Larsen, P. K., Cuppens, R., and Spierings, G. A. C. M., Ferroelectrics 128, 265 (1992).CrossRefGoogle Scholar
4.Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).CrossRefGoogle Scholar
5.Kushida, K. and Takeuchi, H., Appl. Phys. Lett. 50, 1800 (1987).CrossRefGoogle Scholar
6.Hsu, W. Y. and Raj., R.Appl. Phys. Lett. 60, 3105 (1992).CrossRefGoogle Scholar
7.Sviridov, E., Alyoshin, V., Golovko, Y., Zakharchenko, I., Mukhortov, V., and Dudkevich, V., Ferroelectrics 128, 1 (1992).CrossRefGoogle Scholar
8.Al-Shareef, H. N., Kingon, A. I., Chen, X., Buller, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
9.Vijat, D. P. and Desu, S. B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
10.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).Google Scholar
11.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
12.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).CrossRefGoogle Scholar
13.Rajeev, K. P., Shivakuma, G. V., and Raychaudhmi, A. K., Solid State Commun. 79, 591 (1991).CrossRefGoogle Scholar
14.Ichinose, H., Katsuki, H., Takagi, H., and Nagano, M., J. Mater. Sci. 29, 5109 (1994).CrossRefGoogle Scholar
15.Ichinose, H., Nagano, M., Katsuki, H., and Takagi, H., J. Mater. Sci. 29, 5115 (1994).CrossRefGoogle Scholar
16.Yang, C. C., Chen, M. S., Hong, T. T., Wu, C. M., Wu, J.M., and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).CrossRefGoogle Scholar
17.Shyu, M. J., Hong, T. J., and Wu, T. B., Mater. Lett. 23, 221 (1995).CrossRefGoogle Scholar
18.Shyu, M. J., Hong, T. J., Yang, T. J., and Wu, T. B., Jpn. J. Appl. Phys. 34, 3647 (1995).CrossRefGoogle Scholar
19.Chen, M. S., Wu, J. M., and Wu, T. B., Jpn. J. Appl. Phys. 34, 4870 (1995).CrossRefGoogle Scholar
20.Schulz, L. G., J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
21.Wu, T. B., Hong, T. J., and Jiang, M. C., Mater. Chem. Phys. 36, 337 (1994).CrossRefGoogle Scholar
22.Jiang, M. C. and Wu, T. B., J. Mater. Res. 9, 1879 (1994).CrossRefGoogle Scholar
23.Jiang, M. C., Hong, T. J., and Wu, T. B., Jpn. J. Appl. Phys. 33, 6301 (1994).CrossRefGoogle Scholar
24.Abe, K., Tomita, H., Toyoda, H., Imai, M., and Yokote, Y., Jpn. J. Appl. Phys. 30, 2152 (1991).CrossRefGoogle Scholar
25.Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).CrossRefGoogle Scholar