Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T08:03:21.912Z Has data issue: false hasContentIssue false

Effect of zirconia doping on the electrical behavior of yttria

Published online by Cambridge University Press:  31 January 2011

C. C. Wang
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
V. D. Patton
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
S. A. Akbar
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
M. A. Alim
Affiliation:
The Ohio Brass Company, Hubbell Inc., Wadsworth, Ohio 44281
Get access

Abstract

The ac electrical behavior of yttria doped with a zirconia concentration ranging from 0.15 to 20 mole % is investigated in the temperature range of 800 to 1300 °C. The ac electrical data, obtained in the range from 5 Hz to 13 MHz, indicated two distinct relaxations when analyzed in the impedance plane. These relaxations are attributed to lumped grains and trapping within grain boundaries, including possible electrode/sample effects. The admittance plane analysis revealed a semicircular relaxation in the low-frequency region, indicating identical response to that of the low-frequency relaxation of the impedance plane. The incorporation of zirconia into yttria is found to lower the activation energy of conduction in the grains and enhance ionic contribution to the overall electrical conduction. The PO2 studies and transference number measurements near atmospheric region indicate that p-type conduction dominates for the lightly doped yttria. An ionic contribution to the conduction processes becomes significant in heavily doped samples at/near atmospheric PO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Patton, V. D., Wang, C. C., Akbar, S. A., and Alim, M. A., J. Appl. Phys. 78, 1757 (1995).CrossRefGoogle Scholar
2.Patton, V. D., M.S. Thesis, The Ohio State University, Columbus, OH (August 1994).Google Scholar
3. (a)Seitz, M. A., Int. J. Hybr. Microelec. (I.S.H.M.) 3, 1 (1980);Google Scholar
(b)Ackmann, J. J. and Seitz, M. A., CRC Crit. Rev. Biomed. Eng. 11, 281 (1984).Google Scholar
4.Chu, S. H. and Seitz, M. A., J. Solid State Chem. 23, 297 (1978).CrossRefGoogle Scholar
5.Esfahani, R. N. and Maclay, G. J., J. Appl. Phys. 67, 3409 (1990).CrossRefGoogle Scholar
6. (a)Alim, M. A., J. Am. Ceram. Soc. 72, 28 (1989);CrossRefGoogle Scholar
(b)Alim, M. A., Act. Pass. Electron. Comp. 17, 99 (1994);CrossRefGoogle Scholar
(c)Alim, M. A., Seitz, M. A., and Hirthe, R. W., J. Appl. Phys. 63, 2337 (1988).CrossRefGoogle Scholar
7. (a)Azad, A.M., Younkman, L. B., Akbar, S. A., and Alim, M.A., J. Am. Ceram. Soc. 77, 481 (1994);CrossRefGoogle Scholar
(b)Azad, A.M., Akbar, S.A., Younkman, L.B., and Alim, M.A., J. Am. Ceram. Soc. 77, 3145 (1994).CrossRefGoogle Scholar
8.Chen, C. C., Nasrallah, N. M., Anderson, H. U., and Alim, M. A., J. Electrochem. Soc. 142, 491 (1995).CrossRefGoogle Scholar
9. (a)de Bruin, H. J. and Badwal, S. P. S., J. Aust. Ceram. Soc. 14, 20 (1978);Google Scholar
(b)de Bruin, H. J. and Badwal, S. P. S., Phys. Status Solidi A 49, K181 (1978);CrossRefGoogle Scholar
(c)McCann, J. F. and Badwal, S. P. S., J. Electrochem. Soc. 129, 551 (1982).CrossRefGoogle Scholar
10.Bates, J. B. and Wang, J. C., Solid State Ionics 2830, 115 (1988).CrossRefGoogle Scholar
11.Christensen, B. J., Coverdale, R. T., Olson, R. A., Ford, S. J., Garboczi, E. J., Jennings, H. M., and Mason, T. O., J. Am. Ceram. Soc. 77, 2789 (1994).CrossRefGoogle Scholar
12.Duwez, P., Brown, F. H. Jr., and Odell, F., J. Electrochem. Soc. 9, 356 (1951).CrossRefGoogle Scholar
13.Bratton, R. J., J. Am. Ceram. Soc. 52, 213 (1969).CrossRefGoogle Scholar
14.Norby, T. and Kofstad, P., J. Am. Ceram. Soc. 67, 786 (1984).CrossRefGoogle Scholar
15.Tare, V. B. and Schmalzried, H., Z. Phys. Chem. (N.F.) 43, 30 (1964).CrossRefGoogle Scholar
16.Tallan, N. M. and Vest, R. W., J. Am. Ceram. Soc. 49, 401 (1966).CrossRefGoogle Scholar
17.Schieltz, J., Patterson, J. W., and Wilder, D. R., J. Electrochem. Soc. 118, 1140 (1971).CrossRefGoogle Scholar
18.Norby, T. and Kofstad, P., Solid State Ionics 20, 169 (1986).CrossRefGoogle Scholar
19.Norby, T. and Kofstad, P., J. Am. Ceram. Soc. 69, 780 (1986).CrossRefGoogle Scholar
20.Norby, T. and Kofstad, P., J. Am. Ceram. Soc. 69, 784 (1986).CrossRefGoogle Scholar
21.Vest, R. W. and Tallan, N. M., J. Appl. Phys. 36, 543 (1965).CrossRefGoogle Scholar
22.Grant, F. A., J. Appl. Phys. 29, 76 (1958).CrossRefGoogle Scholar
23.Wang, C.C., Chen, W.H., Akbar, S.A., and Alim, M.A., unpublished.Google Scholar
24.Lasker, M. F. and Rapp, R. A., Z. Phys. Chem. (N.F.) 49, 198 (1966).CrossRefGoogle Scholar