Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T05:51:57.324Z Has data issue: false hasContentIssue false

Effect of the SiO2 support morphology on the hydrodesulfurization performance of NiMo catalysts

Published online by Cambridge University Press:  13 November 2018

Anabel D. Delgado
Affiliation:
Departamento de Ingeniería y Química de Materiales, Centro de Investigacion de Materiales Avanzados, Chihuahua 31136, México
Lorena Alvarez Contreras*
Affiliation:
Departamento de Ingeniería y Química de Materiales, Centro de Investigacion de Materiales Avanzados, Chihuahua 31136, México
Karen A. Beltrán
Affiliation:
Departamento de Ingeniería y Química de Materiales, Centro de Investigacion de Materiales Avanzados, Chihuahua 31136, México
Alfredo Aguilar Elguezabal
Affiliation:
Departamento de Ingeniería y Química de Materiales, Centro de Investigacion de Materiales Avanzados, Chihuahua 31136, México
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To study the effects of the support morphology on the hydrodesulfurization (HDS) activity of NiMoS catalysts, ordered mesoporous SiO2 (KIT-6) and nonporous nanospheres of SiO2 were used as supports. Metal species (Ni and Mo) were incorporated through a sequential impregnation technique. The aqueous solution of nickel nitrate was introduced first on the supports, followed by the solution of ammonium molybdate. Subsequently, a sulfidation treatment was carried out in gaseous H2S/H2 atmosphere. The NiMo/Al2O3 commercial catalyst was used as reference. The materials obtained were characterized by N2 physisorption, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) and evaluated in the HDS catalytic reaction of dibenzothiophene in a batch reactor. The results indicate that the textural properties of KIT-6 were the key factors to obtain disperse NiMoS stacks, and a better metal sulfidation, which lead to a higher catalytic activity of the NiMo/KIT-6 catalyst (twice as active) compared to the NiMo/Nanosilica catalyst. In addition, the activity of the NiMo/KIT-6 catalyst was also superior to that obtained for the commercial catalyst.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Méndez, F.J., Franco-López, O.E., Bokhimi, X., Solís-Casados, D.A., Escobar-Alarcón, L., and Klimova, T.E.: Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal., B 219, 479 (2017).CrossRefGoogle Scholar
Song, C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211 (2003).CrossRefGoogle Scholar
Gutiérrez, O.Y., Singh, S., Schachtl, E., Kim, J., Kondratieva, E., Hein, J., and Lercher, J.A.: Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal. 4, 1487 (2014).CrossRefGoogle Scholar
Damyanova, S., Petrov, L., Centeno, M.A., and Grange, P.: Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2–Al2O3 and ZrO2–SiO2 carriers. Appl. Catal., A 224, 271 (2002).CrossRefGoogle Scholar
Rana, M.S., Sámano, V., Ancheyta, J., and Diaz, J.A.I.: A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86, 1216 (2007).CrossRefGoogle Scholar
Shabtai, J.: Catalytic functionalities of supported sulfides. J. Catal. 423, 413 (1987).CrossRefGoogle Scholar
Rana, M.S., Srinivas, B.N., Maity, S.K., Murali Dhar, G., and Prasada Rao, T.S.R.: Origin of cracking functionality of sulfided (Ni) CoMo/SiO2–ZrO2 catalysts. J. Catal. 195, 31 (2000).CrossRefGoogle Scholar
Bataille, F., Lemberton, J.L., Pérot, G., Leyrit, P., Cseri, T., Marchal, N., and Kasztelan, S.: Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: Transformation of dibenzothiophene and 4,6-dimethyldibenzothiophene. Appl. Catal., A 220, 191 (2001).CrossRefGoogle Scholar
Bejenaru, N., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Payen, E., Dumeignil, F., and Royer, S.: Synthesis, characterization, and catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas. Chem. Mater. 21, 522 (2009).CrossRefGoogle Scholar
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).CrossRefGoogle Scholar
Okamoto, Y., Breysse, M., Murali Dhar, G., and Song, C.: Effect of support in hydrotreating catalysis for ultra clean fuels. Catal. Today 86, 1 (2003).CrossRefGoogle Scholar
Kabe, T., Ishihara, A., Qian, W., and Yao, P.: Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts II. Sulfided Ni–Mo catalysts. J. Catal. 210, 319 (2002).Google Scholar
Klimova, T., Calderón, M., and Ramírez, J.: Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Appl. Catal., A 240, 29 (2003).CrossRefGoogle Scholar
Turaga, U.T., Ma, X., and Song, C.: Influence of nitrogen compounds on deep hydrodesulfurization of 4,6-dimethyldibenzothiophene over Al2O3- and MCM-41-supported Co–Mo sulfide catalysts. Catal. Today 86, 265 (2003).CrossRefGoogle Scholar
Soni, K., Rana, B.S., Sinha, A.K., Bhaumik, A., Nandi, M., Kumar, M., and Dhar, G.M.: 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal., B 90, 55 (2009).CrossRefGoogle Scholar
Rao, P., Dhar, M., Advances, R., Aspects, A., Studies, I.C., Science, S., and , E.S.B.V.: All: T.S.R. Prasada Rao and G. Murali Dhar (Editors) Recent Advances in Basic and Applied Aspects of Industrial Catalysis Studies in Surface Science and Catalysis, Vol. 113 9 1998 Elsevier Science B.V. All rights. 113, 41 (1998).Google Scholar
Rao, P.: Modification of catalytic functions of ZSM-5 with special reference to aromatization and NTGG process. Studies in Surface Science and Catalysis, 113, 41 (1998).Google Scholar
Prins, R., de Beer, V., and Somorjai, G.: Structure and function of the catalyst and the promoter in Co–Mo hydrodesulfurization catalysts. Catal. Rev.: Sci. Eng. 31, 1 (1989).CrossRefGoogle Scholar
Han, W., Nie, H., Long, X., Li, M., Yang, Q., and Li, D.: Effects of the support BrØnsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts. Catal. Today 292, 58 (2017).CrossRefGoogle Scholar
Zhou, W., Zhang, Q., Zhou, Y., Qiang, W., Du, L., Ding, S., Jiang, S., and Zhang, Y.: Effects of Ga-and-P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels. Catal. Today 305, 171 (2018).CrossRefGoogle Scholar
Sollner, J., Gonzalez, D.F., Leal, J.H., Eubanks, T.M., and Parsons, J.G.: HDS of dibenzothiophene with CoMoS2 synthesized using elemental sulfur. Inorg. Chim. Acta 466, 212 (2017).CrossRefGoogle Scholar
Liu, X., Tian, B., Yu, C., Gao, F., Xie, S., Tu, B., Che, R., Peng, L.M., and Zhao, D.: Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia 3d symmetry. Angew. Chem., Int. Ed. 41, 3876 (2002).3.0.CO;2-R>CrossRefGoogle Scholar
Wu, H., Duan, A., Zhao, Z., Qi, D., Li, J., Liu, B., Jiang, G., Liu, J., Wei, Y., and Zhang, X.: Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel 130, 203 (2014).CrossRefGoogle Scholar
Liu, S., Chen, J., Peng, Y., Hu, F., Li, K., Song, H., Li, X., Zhang, Y., and Li, J.: Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chem. Eng. J. 334, 191 (2018).CrossRefGoogle Scholar
Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L., Qian, H., and Zhu, C.: Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel 200, 11 (2017).CrossRefGoogle Scholar
Zhao, X., Zheng, Y., Zheng, Y., Zhan, Y., and Zheng, X.: Preparation and pore structure stability at high temperature of silicon-doped ordered mesoporous alumina. RSC Adv. 4, 12497 (2014).CrossRefGoogle Scholar
Alonso-Núñez, G., Bocarando, J., Huirache-Acuña, R., Álvarez-Contreras, L., Huang, Z.D., Bensch, W., Berhault, G., Cruz, J., Zepeda, T.A., and Fuentes, S.: Influence of the activation atmosphere on the hydrodesulfurization of Co–Mo/SBA-15 catalysts prepared from sulfur-containing precursors. Appl. Catal., A 419–420, 95 (2012).CrossRefGoogle Scholar
Ramos, M., Berhault, G., Ferrer, D.A., Torres, B., and Chianelli, R.R.: HRTEM and molecular modeling of the MoS2–Co9S8 interface: Understanding the promotion effect in bulk HDS catalysts. Catal. Sci. Technol. 2, 164 (2012).CrossRefGoogle Scholar
Frizi, N., Blanchard, P., Payen, E., Baranek, P., Rebeilleau, M., Dupuy, C., and Dath, J.P.: Genesis of new HDS catalysts through a careful control of the sulfidation of both Co and Mo atoms: Study of their activation under gas phase. Catal. Today 130, 272 (2008).CrossRefGoogle Scholar
Burneau, A., Barrès, O., Vidal, A., Balard, H., Ligner, G., and Papirer, E.: Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 3. DRIFT characterization of grafted n-hexadecyl chains. Langmuir 6, 1389 (1990).CrossRefGoogle Scholar
Davis, K.M.M. and Tomozawa, M.: Water diffusion into silica glass—Structural-changes in silica glass and their effect on water solubility and diffusivity. J. Non-Cryst. Solids 185, 203 (1995).CrossRefGoogle Scholar
Alessi, A., Agnello, S., Buscarino, G., and Gelardi, F.M.: Raman and IR investigation of silica nanoparticles structure. J. Non-Cryst. Solids 362, 20 (2013).CrossRefGoogle Scholar
Takahashi, M., Iwasawa, Y., and Ogasawara, S.: The nature of adsorbed sites on catalysts. J. Catal. 24, 15 (1976).CrossRefGoogle Scholar
Huirache-Acuña, R., Pawelec, B., Loricera, C.V., Rivera-Muñoz, E.M., Nava, R., Torres, B., and Fierro, J.L.G.: Comparison of the morphology and HDS activity of ternary Ni(Co)–Mo–W catalysts supported on Al-HMS and Al-SBA-16 substrates. Appl. Catal., B 125, 473 (2012).CrossRefGoogle Scholar