Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:59:23.308Z Has data issue: false hasContentIssue false

Effect of the deposition temperature on the properties of iridium thin films grown by means of pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

M. A. El Khakani*
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
B. Le Drogoff
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
M. Chaker
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
*
a) Address all correspondence to this author.[email protected]
Get access

Abstract

Pulsed laser deposition (PLD) of Ir thin films has been achieved by ablating an iridium target with a KrF excimer laser. The iridium deposition rate was investigated, over the (0.4–2) × 109 W/cm2 laser intensity range, and found to reach its maximum at (1.6 ± 0.1) × 109 W/cm2. At this laser intensity, the PLD Ir films were deposited at substrate deposition temperatures ranging from 20 to 600 °C. The PLD Ir films exhibited a (111) preferentially oriented polycrystalline structure with their average grain size increasing from about 10 to 30 nm as the deposition temperature was raised from 20 to 600 °C. Their mean surface microroughness (Ra) was found to change from an average value of about 1 nm in the 20–400 °C temperature range to a value of about 4.5 nm at 600 °C. As the deposition temperature is varied from 20 to 600 °C, not only does the stress of PLD Ir films change drastically from highly compressive (−2.5 GPa) to tensile (+0.8 GPa), but their room-temperature resistivity also gradually decreases in the 20–400 °C range and stabilizes for higher temperatures. In the 400–600 °C range, the resistivity of PLD Ir films was as low as 6.0 ± 0.2 μΩ cm, which is very close to the iridium bulk value of 5.1 μΩ cm. Thus, PLD Ir films exhibiting not only the lowest resistivity but also a nearly zero stress level can be grown at a deposition temperature of about 400 °C. The resistivity of the PLD Ir films can be described by a grain boundary scattering model.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mumtaz, K., Echigoya, J., Hirai, T., and Shindo, Y., Mater. Sci. Eng. A 167, 187 (1993).CrossRefGoogle Scholar
2.Gerfin, T., Hälg, W.J., Atamny, F., and Dahmen, K-H., Thin Solid Films 241, 352 (1993).CrossRefGoogle Scholar
3.Kovacs, G.T.A, Storment, C.W., and Kounaves, S.P., Sens. Actuators B 23, 41 (1995).CrossRefGoogle Scholar
4.Silva, P.R.M, El Khakani, M.A., Chaker, M., Champagne, G.Y., Chevalet, J., Gastonguay, L., Lacasse, R., and Ladouceur, M., Anal. Chim. Acta. 385, 249 (1999).CrossRefGoogle Scholar
5.Solubility Data Series—Metals in Mercury, edited by C. Hirayama, Z. Galus, and C. Guminski. (Pergamon Press, Oxford, U.K., 1986), Vol. 25.Google Scholar
6.El Khakani, M.A., Chaker, M., and Le Drogoff, B., J. Vac. Sci. Technol. A 16, 885 (1998).CrossRefGoogle Scholar
7.Mikhailov, G.M., Malikov, I.V., Chernykh, A.V., and Petrashov, V.T., Thin Solid Films 293, 315 (1997).CrossRefGoogle Scholar
8.El Khakani, M.A., Gat, E., Beaudoin, Y., Chaker, M., Monteil, C., Guay, D., Létourneau, G., and Pépin, H., Proc. SPIE-Int. Soc. Opt. Eng. 2403, 153 (1995).Google Scholar
9.Jia, Q.X., Song, S.G., Foltyn, S.R., and Wu, X.D., J. Mater. Res. 10, 2401 (1995).CrossRefGoogle Scholar
10.El Khakani, M.A., Chaker, M., and Gat, E., Appl. Phys. Lett. 69, 2027 (1996).Google Scholar
11.Pulsed Laser Deposition of Thin Films, edited by D.B. Chrisey and G.K. Hubler (John Wiley & Sons, Inc., New York, 1994).Google Scholar
12.El Khakani, M.A., Chaker, M., Jean, A., Boily, S., Pépin, H., Kieffer, J.C., and Gujrathi, S.C., J. Appl. Phys. 74, 2834 (1993).CrossRefGoogle Scholar
13.Bergmann, H.W., Schutte, K., Schubert, E., and Emmel, A., App. Surf. Sci. 86, 259 (1995).Google Scholar
14.Hiroshima, Y., Ishiguro, T., Urata, I., Makita, H., Ohta, H., Tohogi, M., and Ichinose, Y., J. Appl. Phys. 79, 3572 (1996).Google Scholar
15. Powder Diffraction File, Card No. 06–0598, International Center for Diffraction Data, Swarthmore, PA (1995).Google Scholar
16.Al-Shareef, H.N., Gifford, K.D., Rou, S.H., Hren, P.D., Auciello, O., and Kingon, A.I., Intergrat. Ferroelect. 3, 321 (1993).CrossRefGoogle Scholar
17.Gelfond, N.V., Tuzikov, F.V., and Igumenov, I.K., Thin Solid Films 227, 144 (1993).CrossRefGoogle Scholar
18.Encyclopedia of Materials Science and Engineering, edited by M.B. Bever (Pergamon Press, Oxford, U.K., 1986), Vol. 5, p. 3577.Google Scholar
19.Metals Handbook, 10th ed., edited by J.R. Davis et al. (ASM International, Materials Park, OH, 1990), Vol. 2, p. 1117.Google Scholar
20.Peterson, K.E., Proc. IEEE 70, 420 (1982).Google Scholar
21.Selbach, E., Jacques, H., Eiermann, K., Lengeler, B., and Schilling, W., Thin Solid Films 149, 17 (1987).CrossRefGoogle Scholar
22.Mayadas, A.F. and Shatzkes, M., Phys. Rev. B 1, 1382 (1970).Google Scholar
23.Krusin-Elbaum, L., Thin Solid Films 169, 17 (1989).CrossRefGoogle Scholar
24.Reeves, G.K., Lwan, M.W., and Elliman, R.G., J. Vac. Sci. Technol. A 10, 3203 (1992).CrossRefGoogle Scholar