Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Durlu, N.
Inal, O.T.
and
Yost, F.G.
1991.
L12-type ternary titanium aluminides of the composition Ti25X8Al67: TiAl3-based or TiAl2-based?.
Scripta Metallurgica et Materialia,
Vol. 25,
Issue. 11,
p.
2475.
Dimiduk, D. M.
Parthasarathy, T. A.
Rao, Satish
and
Woodward, C.
1992.
Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour.
p.
237.
Freeman, A. J.
1992.
Structure and Electronic Properties of Complex Solids.
Berichte der Bunsengesellschaft für physikalische Chemie,
Vol. 96,
Issue. 11,
p.
1512.
Morris, D.G.
and
Günter, S.
1992.
Ordering, ternary atom location and ageing in Ll2 trialuminide alloys.
Acta Metallurgica et Materialia,
Vol. 40,
Issue. 11,
p.
3065.
Freeman, A. J.
Xu, J.-H.
Hong, T.
and
Lin, W.
1992.
Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour.
p.
1.
Ma, Y.
Arnesen, T.
Gj⊘nnes, J.
and
Taft⊘, J.
1992.
Laser processed Al3Ti-based intermetallics: Al5±XTi2±Y(Fe, Ni, or Cu)1±z.
Journal of Materials Research,
Vol. 7,
Issue. 7,
p.
1722.
Winnicka, M. B.
and
Varin, R. A.
1992.
Microstructure and ordering of L12 titanium trialuminides.
Metallurgical Transactions A,
Vol. 23,
Issue. 11,
p.
2963.
Liu, Senying
Hu, Rongze
and
Wang, Chongyu
1993.
Electronic-structure effects on the intermetallic compounds Al3Ti with the addition of the alloying elements Cr or Mn.
Journal of Applied Physics,
Vol. 74,
Issue. 5,
p.
3204.
Senying, Liu
Rongze, Hu
and
Chongyu, Wang
1994.
Electronic and physical properties of the intermetallic compounds Al3Ti+X(X = Mn, Fe, or Cu).
Solid State Communications,
Vol. 92,
Issue. 4,
p.
303.
Kogachi, M.
and
Kameyama, A.
1994.
Simple thermodynamical treatment for the site preference in L12 intermetallic compounds Al3Ti-X.
Scripta Metallurgica et Materialia,
Vol. 30,
Issue. 8,
p.
1089.
Farraro, J.F.
and
Stoloff, N.S.
1994.
The influence of thermal expansion mismatch on the microstructure of Al66Cr9Ti25-base composites.
Intermetallics,
Vol. 2,
Issue. 2,
p.
95.
Schwarz, R. B.
Desch, P. B.
and
Srinivasan, S.
1994.
Statics and Dynamics of Alloy Phase Transformations.
Vol. 319,
Issue. ,
p.
81.
Makino, Yukio
1995.
Structural mapping of intermetallic compounds and bond character.
Materials Science and Engineering: A,
Vol. 192-193,
Issue. ,
p.
77.
Trambly de Laissardière, G.
Manh, D. Nguyen
Magaud, L.
Julien, J. P.
Cyrot-Lackmann, F.
and
Mayou, D.
1995.
Electronic structure and hybridization effects in Hume-Rothery alloys containing transition elements.
Physical Review B,
Vol. 52,
Issue. 11,
p.
7920.
Pope, David P.
and
Darolia, Ram
1996.
High-Temperature Applications of Intermetallic Compounds.
MRS Bulletin,
Vol. 21,
Issue. 5,
p.
30.
Liu, Senying
Hu, Rongze
and
Wang, Chongyu
1996.
Electronic and physical properties of Al3VxTi1−x (x=1, 0.875, and 0) alloys.
Journal of Applied Physics,
Vol. 79,
Issue. 1,
p.
214.
Luo, Yinyan
Li, Yang
Chen, Ning
Weng, Jun
and
Zhu, Fengwu
1998.
Electronic structure and FIM imaging mechanism of Fe−Al intermetallic compounds.
Science in China Series E: Technological Sciences,
Vol. 41,
Issue. 2,
p.
140.
Bester, G
and
Fähnle, M
2001.
Interpretation ofab initiototal energy results in a chemical language: II. Stability of TiAl3and ScAl3.
Journal of Physics: Condensed Matter,
Vol. 13,
Issue. 50,
p.
11551.
Colinet, C.
and
Pasturel, A.
2002.
Theoretical calculation of the phase diagram between one-dimensional long-period structures in the quasi binary sections: Pd3xRh3(1−x)V, Pt3xRh3(1−x)V, and Pt3VxTi(1−x).
Calphad,
Vol. 26,
Issue. 4,
p.
563.
Yu, R.
He, L. L.
and
Ye, H. Q.
2002.
Effect of W on structural stability of TiAl intermetallics and the site preference of W.
Physical Review B,
Vol. 65,
Issue. 18,