Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T20:47:28.307Z Has data issue: false hasContentIssue false

Effect of temperature on the growth of a-axis ZnO films: a reactive force field-based molecular dynamics study

Published online by Cambridge University Press:  05 January 2017

Y.L. Liu
Affiliation:
Institute of Materials Physics and Chemistry, College of Material Science and Engineering, Northeastern University, Shenyang 110819, China
C.H. Dong
Affiliation:
Institute of Materials Physics and Chemistry, College of Material Science and Engineering, Northeastern University, Shenyang 110819, China
B.Z. Sun
Affiliation:
Institute of Materials Physics and Chemistry, College of Material Science and Engineering, Northeastern University, Shenyang 110819, China
Y. Qi*
Affiliation:
Institute of Materials Physics and Chemistry, College of Material Science and Engineering, Northeastern University, Shenyang 110819, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Understanding film initiation and growth mechanisms at the atomic level is crucial to obtain high-quality nonpolar ZnO films. Using the advanced reactive force field-based molecular dynamics method, we theoretically studied the effect of substrate temperature (350–950 K) on the quality, layer develop mechanism and defect formation of ZnO films. Investigation of the energy, radial distribution function, layer coverage, sputtering and injecting phenomena indicated that the present films grown at 500–600 K possessed the optimal quality. Further investigation of the growth condition, instant film profiles, interfacial microstructure evolutions and layered snapshots revealed that, addition of atoms on newly formed localized films can induce some partially bonded or extruded atoms out of the film plane. Further adherence of depositing atoms to these unstable or extruded atoms induces the initiation and growth of a new layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K.H.: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000).CrossRefGoogle ScholarPubMed
Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I.: Electronic structure: Wide-band, narrow-band, and strongly correlated systems. Phys. Rev. B: Condens. Matter Mater. Phys. 62, R13302 (2000).CrossRefGoogle Scholar
Wang, J.S. and Lakin, K.M.: c-Axis inclined ZnO piezoelectric shear wave films. Appl. Phys. Lett. 42, 352 (1983).CrossRefGoogle Scholar
Nistor, L.C., Ghica, C., Matei, D., Dinescub, G., Dinescub, M., and Van Tendelooc, G.: Growth and characterization of a-axis textured ZnO thin films. J. Cryst. Growth 277, 26 (2005).CrossRefGoogle Scholar
Cui, Y.G., Du, G.T., Zhang, Y.T., Zhu, H.C., and Zhang, B.L.: Growth of ZnO(002) and ZnO(100) films on GaAs substrates by MOCVD. J. Cryst. Growth 282, 389 (2005).CrossRefGoogle Scholar
Chen, S.S., Pan, X.H., Ding, P., Zhang, H.H., Chen, W., Dai, W., Huang, J.Y., and Ye, Z.Z.: Effect of high temperature thermal treatment of (100) γ-LiAlO2 substrate on epitaxial growth of ZnO films by plasma-assisted molecular beam epitaxy. Thin Solid Films 564, 156 (2014).CrossRefGoogle Scholar
Lee, C.Y., Chen, C.L., Chang, L.W., and Chou, M.M.C.: Growth of nonpolar ZnO films on (100) beta-LiGaO2 substrate by molecular beam epitaxy. J. Cryst. Growth 407, 11 (2014).CrossRefGoogle Scholar
Han, S.K., Hong, S.K., Lee, J.W., Kim, J.G., Jeong, M., Lee, J.Y., Hong, S.I., Park, J.S., Ihm, Y.E., Ha, J.S., and Yao, T.: Properties of a-plane ZnO films on sapphire substrates grown at different temperatures by plasma-assist molecular beam epitaxy. Thin Solid Films 519, 6394 (2011).CrossRefGoogle Scholar
Ding, P., Pan, X.H., Huang, J.Y., Lu, B., Zhang, H.H., Chen, W., and Ye, Z.Z.: Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Mater. Lett. 71, 18 (2012).CrossRefGoogle Scholar
Han, X.Y., Dai, J.N., and Yu, C.H.: A reproducible low temperature chemical solution deposition of non-polar $\left[ {11\bar 20} \right]$ and $\left[ {10\bar 10} \right]$ ZnO films for optoelectronic applications. Appl. Surf. Sci. 256, 4682 (2010).Google Scholar
Elanchezhiyan, J., Bae, K.R., Lee, W.J., Shin, B.C., and Kim, S.C.: Growth and characterization of non-polar ZnO thin films by pulsed laser deposition. Mater. Lett. 64, 1190 (2010).CrossRefGoogle Scholar
Lu, J.G., Ye, Z.Z., Huang, J.Y., Wang, L., and Zhao, B.H.: Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Appl. Surf. Sci. 207, 295 (2003).CrossRefGoogle Scholar
Chen, X.L., Geng, X.H., Xue, J.M., Zhang, D.K., Hou, G.F., and Zhao, Y.: Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J. Cryst. Growth 296, 43 (2006).CrossRefGoogle Scholar
Kim, K.W., Son, H.S., Choi, N.J., Kim, J., and Lee, S.N.: Growth and characterization of polar and nonpolar ZnO film grown on sapphire substrates by using atomic layer deposition. Thin Solid Films 546, 114 (2013).CrossRefGoogle Scholar
Zhu, S.B., Geng, Y., Lu, H.L., Zhang, Y., Sun, Q.Q., Ding, S.J., and Zhang, D.W.: Effects of rapid thermal annealing on Hf-doped ZnO films grown by atomic layer deposition. J. Alloys Compd. 577, 340 (2013).CrossRefGoogle Scholar
Dai, J.N., Han, X.Y., Wu, Z.H., Yu, C.H., Xiang, R.F., He, Q.H., Gao, Y.H., Chen, C.Q., Xiao, X.H., and Peng, T.C.: Growth of non-polar ZnO films on a-GaN/r-Al2O3 templates by radio-frequency magnetron sputtering. J. Alloys Compd. 489, 519 (2010).CrossRefGoogle Scholar
Shahzad, M.B., Lu, H., Wang, P., and Qi, Y.: A novel approach for controlled oriented growth of non-polar m-plane ZnO thin films via low temperature chemical solution route. CrystEngComm 14, 7123 (2012).CrossRefGoogle Scholar
Yu, N.S., Dong, D.P., Qi, Y., Wu, Y.F., and Chen, L.: Ultraviolet photoconductive detectors based on a-plane ZnO film grow by hydrothermal method. J. Electron. Mater. 45, 1073 (2016).CrossRefGoogle Scholar
Qi, L., Shahzad, M.B., and Qi, Y.: A reproducible low temperature chemical solution deposition of non-polar $\left[ {11\bar 20} \right]$ and $\left[ {10\bar 10} \right]$ ZnO films for optoelectronic applications. CrystEngComm 18, 6573 (2016).CrossRefGoogle Scholar
Ma, S.Y., Shang, X.R., Ma, L.G., and Su, C.: Influence of oxygen partial pressure on the micro-structural and optical properties of Cu-doped ZnO films. J. Northwest Norm. Univ., Nat. Sci. 47, 15 (2011).Google Scholar
Tarsa, E.J., Heying, B., Wu, X.H., Fini, P., DenBaars, S.P., and Speck, J.S.: Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997).CrossRefGoogle Scholar
Zhang, B.Y., Yao, B., Wang, S.P., Li, Y.F., Shan, C.X., Zhang, J.Y., Li, B.H., Zhang, Z.Z., and Shen, D.Z.: Influence of Zn/O ratio on structural, electrical and optical properties of ZnO thin films fabricated by plasma-assisted molecular beam epitaxy. J. Alloys Compd. 503, 155 (2010).CrossRefGoogle Scholar
Han, S.K., Kim, J.H., Hong, S.K., Song, J.H., Lee, J.W., Lee, J.Y., Hong, S.I., and Yao, T.: Investigation of nonpolar $\left( {11\bar 20} \right)$ a-plane ZnO films grown under various Zn/O ratios by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 312, 2196 (2010).CrossRefGoogle Scholar
Liu, Y.L., Babar Shahzad, M., and Qi, Y.: Growth of a-axis ZnO films on the defective substrate with different O/Zn ratios: A reactive force field based molecular dynamics study. J. Alloys Compd. 628, 317 (2015).CrossRefGoogle Scholar
van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A. III: ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q.S., Xu, X., and Goddard, W.A. III: ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107, 3803 (2003).CrossRefGoogle Scholar
Zhang, Q., Cagin, T., van Duin, A.C.T., Goddard, W.A. III, Qi, Y., and Hector, L.G.: Adhesion and nonwetting-wetting transition in the Al/α−Al2O3 interface. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 045423 (2004).CrossRefGoogle Scholar
Liu, Y.L., Liu, H., Li, W., and Qi, Y.: Effect of substrate temperature on the growth and microstructure of ZnO film. Acta Phys.-Chim. Sin. 29, 631 (2013).Google Scholar
Raymand, D., van Duin, A.C.T., Baudin, M., and Hermansson, K.: A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 602, 1020 (2008).CrossRefGoogle Scholar
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Tsuji, T. and Hirohashi, M.: Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl. Surf. Sci. 158, 134 (2000).Google Scholar
Vennegues, P., Chauveau, J.M., Korytov, M., Deparis, C., Zuniga-perez, J., Morhain, C.: Ultraviolet photoconductive detectors based on a-plane ZnO film grow by hydrothermal method. J. Appl. Phys. 103, 083525 (2008).Google Scholar
McCluskey, M.D. and Jolela, S.J.: Defects in ZnO. J. Appl. Phys. 106, 071101 (2009).CrossRefGoogle Scholar
Yadav, H.K., Sreenivas, K., Gupta, V., Singh, S.P., and Katiyar, R.S.: Effect of surface defects on the visible emission from ZnO nanoparticles. J. Mater. Res. 22, 2404 (2011).CrossRefGoogle Scholar