Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:09:39.812Z Has data issue: false hasContentIssue false

Effect of sensitizing Cr3+ ion on optical parameters of Nd-doped yttrium calcium oxyborate crystals

Published online by Cambridge University Press:  31 January 2011

H. R. Xia
Affiliation:
Department of Physics & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
M. Guo
Affiliation:
Institute of Crystal Materials & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
J. Y. Wang
Affiliation:
Institute of Crystal Materials & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
J. Q. Wei
Affiliation:
Institute of Crystal Materials & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
X. B. Hu
Affiliation:
Institute of Crystal Materials & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Y. G. Liu
Affiliation:
Institute of Crystal Materials & National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Get access

Abstract

Pure, Nd doped, and Nd–Cr bidoped yttrium calcium oxyborate Yca4O(BO3)3 (YCOB), NdxY1−xCa4O(BO3)3 (NYCOB) with x = 0.86, and Cr:NdxY1−xCa4O(BO3)3 (Cr:NYCOB) with x = 0.45 and a small amount of Cr3+ ions crystallized with a fluorapatite-type structure in the monoclinic system. The unit cell constants were a = 0.8076(7), b = 1.6020(10), and c = 0.3527(2) nm with the angle β of 101.23° for the NYCOB and z = 2. The measured absorption spectra of NYCOB and Cr:NYCOB were compared to Judd–Ofelt (JO) theory. When applied, the JO theory of parity-forbidden electric-dipole transitions of rare earth ions on noncentrosymmetric sites demonstrates good agreement. The experiments showed that the Cr3+ ions were introduced into the crystalline lattice as a sensitizer to absorb the excitation energy and transfer it to the Nd3+ ions in the lattice structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leonyuk, N.I. and Leonyuk, L.I., Prog. Cryst. Growth Charact. Mater. 31, 181 (1995).Google Scholar
2. Amano, S., Jpn. Rev. Laser Eng. 77, 221 (1990).Google Scholar
3. Iwai, M., Kobayashi, T., Furuya, I., Mori, Y., and Sasaki, T., Jpn. J. Appl. Phys. 36, L276 (1997).CrossRefGoogle Scholar
4. Aka, G., Bloch, L., Benitez, J.M., Crochet, P., Kahn-Harari, A., Vivien, D., Salin, F., Coquelin, P., and Colin, D., OSA Proc. Adv. Solid-State Lasers 1, 336 (1996).Google Scholar
5. Jang, W.K., Ye, Q., Eichenholz, J., Richardson, M.C., and Chai, B.H.T, Opt. Commun. 155, 332 (1998).CrossRefGoogle Scholar
6. Chen, C.T., Wu, B.C., Jiang, A.D., and You, G.M., Sci. Sin. B 28, 235 (1985).Google Scholar
7. Chen, C.T., Wu, Y.C., Jiang, A.D., Wu, B.C., You, G.M., Li, R.K., and Lin, S.J., J. Opt. Soc. Am. B6, 616 (1989).CrossRefGoogle Scholar
8. Robinson, K., Photonics Spectra 32, 38 (1998).Google Scholar
9. Ye, Q., Shah, L., Eichenholz, J.M., Hammons, D.A., Peale, R.E., Richardson, M., Chai, B.H.T, and Chin, A., Advanced Solid State Lasers 26, 100 (1999).Google Scholar
10. Chai, B.H.T, Hammons, D.A., Eichenholz, J.M., Ye, Q., Jang, W.K., Shah, L., Luntz, G.M., Richardson, M., and Qiu, H., OSA TOPS on Advanced Solid State Lasers, Paper PDP-11, Feb. 1998.Google Scholar
11. Chai, B.H.T, Eichenholz, J.M., Ye, Q., Hammons, D.A., Jang, W.K., Shah, L., Luntz, G.M., and Richardson, M., OSA Proc. Adv. Solid State Lasers PDP-10 (Feb. 1998).Google Scholar
12. Chai, B.H.T, Eichenholz, J.M., Ye, Q., Jang, W.K., and Richardson, M., CLEO, CthA6 (May 1998).Google Scholar
13. Kaminskii, A.A., Laser Crystals (Springer-Verlag, 1981), Chap. 2 and 4.CrossRefGoogle Scholar
14. Judd, B.R., Phys. Rev. 127, 750 (1962).CrossRefGoogle Scholar
15. Ofelt, G.S., J. Chem. Phys. 37, 511 (1962).CrossRefGoogle Scholar
16. Carnall, W.T., Fields, P.R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968).CrossRefGoogle Scholar
17. Carnall, W.T., Fields, P.R., and Wybourne, B.G., J. Chem. Phys. 42, 3797 (1965).CrossRefGoogle Scholar
18. Krupke, W.F., Phys. Rev. 145, 325 (1966).CrossRefGoogle Scholar
19. Wybourne, B.G., J. Chem. Phys. 32, 639 (1960).CrossRefGoogle Scholar
20. Wybourne, B.G., J. Chem. Phys. 34, 279 (1961).CrossRefGoogle Scholar
21. Rotenberg, M., Bivens, R., Metropolis, N., and Wooten, J.K. Jr, The 3-j and 6-j Symbols (The MIT Press, Cambridge, MA, 1959).Google Scholar
22. Nielsen, C.W. and Koster, G.F., Spectroscopic Coefficients for the pn, dn, and fn Configurations (The MIT Press, Cambridge, MA, 1963).Google Scholar
23. Dexter, D.L., J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
24. Allen, R., Esterowitz, L., Kruer, M., and Bartoli, F., Abstracts of 13th Rare Earth Research Conf. Oglebay Park, (Oct 16–19, 1977), p. 26.Google Scholar
25. Ivey, H.F., Proc. International Conference on Luminescence (Academiai Kiado Hungary, Budapest, Hungary, 1968), pp. 20272049.Google Scholar
26. Tolstoi, M.N., Nonradiative energy transfer among rare-earth ions in crystals and glasses, in Spektroskopiya Kristallov, edited by Feofilov, P.P. (Nauka, Moscow, Russia, 1970), pp. 124135.Google Scholar